We extend the SM5 solvation model for calculating solvation free energies of a variety of organic solutes in both aqueous and organic solvents so that it can be employed in conjunction with high-level electronic structure calculations. The extension is illustrated by presenting three implementations based on density-functional theory (DFT). The three implementations are called SM5.42R/BPW91/MIDI!6D, SM5.42R/BPW91/DZVP, and SM5.42R/BPW91/6-31G*. They have the following features: (1) They utilize gradient-corrected DFT with polarized double zeta basis sets to describe the electronic structure of a solute. The particular exchange-correlation functional adopted is Becke’s exchange with the Perdew–Wang 1991 correlation functional, usually called BPW91. The MIDI!6D, DZVP, and 6-31G* basis sets are used. (2) They employ fixed solute geometries in solvation calculations. The model is designed to predict solvation free energies based on any reasonably accurate gas-phase solute geometry. (3) The electric polarization in the solute-solvent system is described by the generalized Born approximation with self-consistent reaction-field solute partial atomic charges obtained from the CM2 class IV charge model. (4) The solvation effects within the first solvation shell are included in the form of SM5-type atomic surface tensions. Both DFT parameterizations are developed using 275 neutral solutes and 49 ions with gas-phase Hartree–Fock/MIDI! geometries. These solutes contain a wide variety of organic functional groups which include H, C, N, O, F, P, S, Cl, Br, and I atoms. For 2135 free energies of solvation of the neutral molecules in water and 90 organic solvents, SM5.42R/BPW91/MIDI!6D, SM5.42R/BPW91/DZVP, and SM5.42R/BPW91/6-31G* yield mean unsigned errors in solvation free energies of 0.45 kcal/mol, 0.44 kcal/mol, and 0.43 kcal/mol, respectively. For 49 ions in water, SM5.42R/BPW91/MIDI!6D produces a mean unsigned error of 3.9 kcal/mol, while SM5.42R/BPW91/DZVP and SM5.42R/BPW91/6-31G* give 3.6 kcal/mol and 3.9 kcal/mol, respectively.

1.
(a)
J.
Tomasi
and
M.
Persico
,
Chem. Rev.
94
,
2027
(
1994
);
(b) C. J. Cramer and D. G. Truhlar, in Reviews in Computational Chemistry, edited by D. B. Boyd and K. B. Lipkowitz (VCH, New York, 1995), Vol. 6, p. 1;
(c) J.-L. Rivail and D. Rinaldi, in Computational Chemistry: Reviews of Current Trends, edited by J. Leszczynski (World Scientific, Singapore, 1996), Vol. 1, p. 139.
2.
(a) K. Heinzinger, in Supercomputer Simulations in Chemistry, edited by M. Dupuis (Springer-Verlag, Berlin, 1986), p. 261;
(b)
W. L.
Jorgensen
,
Acc. Chem. Res.
22
,
184
(
1989
);
(c)
P. E.
Smith
and
B.
Montgomery
,
J. Phys. Chem.
98
,
9700
(
1994
).
3.
C. J.
Cramer
and
D. G.
Truhlar
,
J. Am. Chem. Soc.
113
,
8305
(
1991
);
C. J.
Cramer
and
D. G.
Truhlar
,
J. Am. Chem. Soc.
113
,
9901
(
1991
).
4.
(a)
C. J.
Cramer
and
D. G.
Truhlar
,
Science
256
,
213
(
1992
);
(b)
C. J.
Cramer
and
D. G.
Truhlar
,
J. Comput.-Aided Molec. Des.
6
,
629
(
1992
).
5.
D. J.
Giesen
,
J. W.
Storer
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
117
,
1057
(
1995
).
6.
C. C.
Chambers
,
G. D.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem.
100
,
16385
(
1996
).
7.
D. J.
Giesen
,
M. Z.
Gu
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Org. Chem.
61
,
8720
(
1996
).
8.
D. J.
Giesen
,
G. D.
Hawkins
,
D. A.
Liotard
,
C. J.
Cramer
, and
D. G.
Truhlar
,
Theor. Chem. Acc.
98
,
85
(
1997
).
9.
G. D.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem.
100
,
19824
(
1996
).
10.
D. J.
Giesen
,
C. C.
Chambers
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
101
,
2061
(
1997
).
11.
G. D.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
101
,
7147
(
1997
).
12.
G. D.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
102
,
3257
(
1998
).
13.
G. J.
Hoijtink
,
E.
deBoer
,
P. H.
van der Meij
, and
W. P.
Weijland
,
Recl. Trav. Chim. Pays-Bas.
75
,
487
(
1956
).
14.
(a)
I.
Jano
,
Compt. Rend. Acad. Sci. (Paris)
261
,
103
(
1965
);
(b) O. Tapia, in Quantum Theory of Chemical Reactions, edited by R. Daudel, A. Pullman, L. Salem, and A. Viellard (Reidel, Dordrecht, 1980), Vol. 2, p. 25.
15.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
16.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
17.
T. Ziegler and V. Tschinke, in Density Functional Methods in Chemistry, edited by J. K. Labanowski and J. W. Andzelm (Springer-Verlag, New York, 1991), p. 139.
18.
Density Functional Theory of Molecules, Clusters, and Solids, edited by D. E. Ellis (Kluwer Academic, Dordrecht, 1995).
19.
P.
Margl
,
J. C. W.
Lohrenz
,
T.
Ziegler
, and
P. E.
Blöch
,
J. Am. Chem. Soc.
118
,
4434
(
1996
), and references therein.
20.
J. L.
Chen
,
L.
Noodleman
,
D. A.
Case
, and
D.
Bashford
,
J. Phys. Chem.
98
,
11059
(
1994
).
21.
C.
Adamo
and
F.
Lelj
,
Chem. Phys. Lett.
223
,
54
(
1994
).
22.
A.
Fortunelli
and
J.
Tomasi
,
Chem. Phys. Lett.
231
,
34
(
1994
).
23.
(a)
T. N.
Truong
and
E. V.
Stefanovich
,
Chem. Phys. Lett.
240
,
253
(
1995
);
(b)
T. N.
Truong
and
E. V.
Stefanovich
,
J. Chem. Phys.
103
,
3709
(
1995
);
(c)
E. V.
Stefanovich
and
T. N.
Truong
,
Chem. Phys. Lett.
244
,
65
(
1995
).
24.
J.
Andzelm
and
C.
Kolmel
,
J. Chem. Phys.
103
,
9312
(
1995
).
25.
G. J.
Tawa
,
R. L.
Martin
,
L. R.
Pratt
, and
T. V.
Russo
,
J. Phys. Chem.
100
,
1515
(
1996
).
26.
J.
Li
,
T.
Zhu
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
102
,
1820
(
1998
).
27.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
28.
P.-O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
29.
J. W.
Storer
,
D. J.
Giesen
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Comput.-Aided Molec. Des.
9
,
87
(
1995
).
30.
(a)
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
(b) J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11;
(c)
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
ACS Symp. Ser.
629
,
453
(
1996
);
(d)
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
).
31.
(a)
R. E.
Easton
,
D. J.
Giesen
,
A.
Welch
,
C. J.
Cramer
, and
D. G.
Truhlar
,
Theor. Chim. Acta
93
,
281
(
1996
);
(b)
J.
Li
,
C. J.
Cramer
, and
D. G.
Truhlar
,
Theor. Chem. Acc.
99
,
192
(
1998
).
32.
N.
Godbout
,
D. R.
Salahub
,
J.
Andzelm
, and
E.
Wimmer
,
Can. J. Chem.
70
,
560
(
1992
).
33.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
34.
P. C.
Hairharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
35.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
36.
The 6-31G* basis for Br is taken from Ref. 61.
37.
T.
Kozaki
,
K.
Morihasi
, and
O.
Kikuchi
,
J. Am. Chem. Soc.
111
,
1547
(
1989
).
38.
O.
Kikuchi
,
T.
Matsvoka
,
H.
Sawahata
, and
O.
Takahashi
,
J. Mol. Struct.: THEOCHEM
305
,
79
(
1994
).
39.
W. C.
Still
,
A.
Tempczak
,
R. C.
Hawley
, and
T.
Hendrickson
,
J. Am. Chem. Soc.
112
,
6127
(
1991
).
40.
I.
Mayer
,
Chem. Phys. Lett.
97
,
270
(
1983
).
41.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
42.
CRC Handbook of Chemistry and Physics, 75th ed., edited by D. R. Lide (CRC Press, Boca Raton, FL, 1995).
43.
M. H.
Abraham
,
Chem. Soc. Rev.
22
,
73
(
1993
).
44.
M. H.
Abraham
,
J. Phys. Org. Chem.
6
,
660
(
1993
).
45.
M. H.
Abraham
,
H. S.
Chadha
,
G. S.
Whiting
, and
R. C.
Mitchell
,
J. Pharm. Sci.
83
,
1085
(
1994
).
46.
D.
Suleiman
and
C. A.
Eckert
,
J. Chem. Eng. Data
39
,
692
(
1994
).
47.
S.
Cabani
,
P.
Gianni
,
V.
Mollica
, and
L. J.
Lepori
,
Solution Chem.
10
,
563
(
1981
).
48.
M. H.
Abraham
,
G. S.
Whiting
,
R.
Fuchs
, and
E. J.
Chambers
,
J. Chem. Soc., Perkin Trans. 2
1990
,
291
.
49.
J.
Hine
and
P. K.
Mookerjee
,
J. Org. Chem.
40
,
287
(
1975
).
50.
D. D.
Wagman
,
J. Phys. Chem. Ref. Data Suppl.
2
,
11
(
1982
).
51.
R.
Wolfenden
,
Biochemistry
17
,
201
(
1978
).
52.
R. D.
Wauchope
and
R.
Haque
,
Can. J. Chem.
50
,
133
(
1972
).
53.
P.
Han
and
D. M.
Bartles
,
J. Phys. Chem.
94
,
7294
(
1990
).
54.
A. J. Leo, Masterfile from MedChem Software, BioByte Corp., P. O. 517, Claremont, CA 91711-0157 (1994).
55.
D. M.
Ferguson
,
D. A.
Pearlman
,
W. C.
Swope
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
362
(
1992
).
56.
R. G.
Pearson
,
J. Am. Chem. Soc.
108
,
6109
(
1986
).
57.
J.
Florian
and
A.
Warshel
,
J. Phys. Chem. B
101
,
5583
(
1997
).
58.
J.
Andzelm
and
E.
Wimmer
,
J. Chem. Phys.
96
,
1280
(
1992
).
59.
DGAUSS 4.0, Oxford Molecular, Ltd. (1996).
60.
AMSOL version 6.5, G. D. Hawkins, D. G. Giesen, C. C. Chambers, G. C. Lynch, I. Rossi, J. W. Storer, D. Rinaldi, D. A. Liotard, C. J. Cramer, and D. G. Truhlar. University of Minnesota, Minneapolis, 1998.
61.
GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. A.-Laham, V. G. Zakszewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, 1995.
62.
MN-GSM version 98.2.3, J. Li, G. D. Hawkins, D. A. Liotard, C. J. Cramer, and D. G. Truhlar, University of Minnesota, Minneapolis, 1998.
63.
M. J. S.
Dewar
,
E. G.
Zoebisch
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
64.
See AIP Document No. E-PAPS: E-JCPSA6-109-508844 for a table of solvation free energies and terms in the solvation free energy.
E-PAPS document files may be obtained free of charge from the FTP server at http://www.aip.org/epaps/epaps.html or from ftp.aip.org in the directory /epaps/. For further information, send e-mail to paps@aip.org or fax to (516)576-2223.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.