The dynamics of a 20 base pair oligonucleotide is studied by dynamic light scattering-photon correlation spectroscopy and depolarized Fabry–Perot interferometry. The 20 base pair oligonucleotide is a well-defined, albeit short, rigid rod molecule that serves as a model for polyelectrolyte solution dynamics. The effects of added salt on the solution rotational and translational dynamics are examined in detail as functions of the 20-mer concentration. Coupled mode theory together with counterion condensation theory gives good predictions for the effects of salt on the translational diffusion of the 20-mer at the relatively low oligonucleotide concentrations studied. Comparison of the experimental results with these theories shows that the effective charge density of the polyion in solution is approximately equal to the reciprocal of the product of the Bjerrum length and the counterion charge, νeff≅1/NλB. Calculation shows that the numerical solution of the coupled mode theory matrix gives a better fit of our measured polyion diffusion coefficients than the approximate equation derived by Lin, Lee, and Schurr. Simple approximations for the effective rod length, Leff=L+κ−1, and effective rod diameter, deff=d+κ−1, are used to model the thermodynamic-hydrodynamic interactions for charged rodlike molecules and to make predictions for the diffusion second virial coefficient as a function of added salt concentration. This alternative to the coupled mode theory also gives good agreement with experiment. The rotational diffusion constants of the oligonucleotide measured by depolarized Fabry–Perot interferometry show a slowing down of the rotation at low added salt concentrations as the oligonucleotide concentration is increased.

1.
H. Liu, Ph.D. thesis, Stanford University, 1996.
2.
B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
3.
S. C.
Lin
,
W. I.
Lee
, and
J. M.
Schurr
,
Biopolymers
17
,
1041
(
1978
).
4.
P.
Tivant
,
M.
Turq
,
M.
Drifford
,
R.
Magdelenat
, and
R.
Menez
,
Biopolymers
22
,
643
(
1983
).
5.
K.
Schmitz
,
Macromolecules
27
,
3442
(
1994
).
6.
F.
Oosawa
and
N.
Imai
,
J. Chem. Phys.
23
,
2084
(
1954
).
7.
F.
Oosawa
,
N.
Imai
, and
I.
Kagawa
,
J. Polym. Sci.
13
,
93
(
1954
).
8.
F.
Oosawa
,
J. Polym. Sci.
23
,
421
(
1957
).
9.
F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).
10.
G. S.
Manning
,
J. Chem. Phys.
51
,
924
(
1969
).
11.
G. S.
Manning
,
J. Chem. Phys.
51
,
934
(
1969
).
12.
G. S.
Manning
,
J. Chem. Phys.
51
,
3249
(
1969
).
13.
G. S.
Manning
,
Annu. Rev. Phys. Chem.
23
,
117
(
1972
).
14.
G. S.
Manning
,
Biophys. Chem.
7
,
95
(
1977
).
15.
G. S.
Manning
,
Biophys. Chem.
8
,
65
(
1978
).
16.
G. S.
Manning
,
Q. Rev. Biophys.
11
,
179
(
1978
).
17.
N.
Ise
and
T.
Okubo
,
Macromolecules
11
,
439
(
1978
).
18.
G. V.
Ramanathan
and
C. P.
Woodbury
,
J. Chem. Phys.
77
,
4133
(
1982
).
19.
G. V.
Ramanathan
,
J. Chem. Phys.
78
,
3223
(
1983
).
20.
C. F.
Anderson
and
M. T.
Record
,
Annu. Rev. Phys. Chem.
33
,
191
(
1982
).
21.
B. H.
Zimm
and
M. Le
Bret
,
J. Biomol. Struct. Dyn.
1
,
461
(
1983
).
22.
M. Le
Bret
and
B. H.
Zimm
,
Biopolymers
23
,
287
(
1984
).
23.
T.
Nicolai
and
M.
Mandel
,
Macromolecules
22
,
438
,
2348
(
1989
).
24.
P.
Ander
and
M.
Karden
,
Macromolecules
17
,
2413
(
1984
).
25.
J. W.
Klein
and
B. R.
Ware
,
J. Chem. Phys.
80
,
1334
(
1984
).
26.
S.
Ghagare
,
G. B.
Savitsky
, and
H. G.
Spencer
,
Polymer
33
,
4725
(
1992
).
27.
L. M.
Penafiel
and
T. A.
Litowitz
,
J. Chem. Phys.
96
,
3033
(
1992
).
28.
L. Skibinska, J. Gapinski, H. Liu, A. Patkowski, E. W. Fischer, and R. Pecora, J. Chem. Phys. (in press).
29.
M. A.
Tracy
and
R.
Pecora
,
Macromolecules
25
,
337
(
1992
).
30.
J.
Peterson
,
J. Chem. Phys.
40
,
2680
(
1964
).
31.
L.
Onsager
,
Ann. (N.Y.) Acad. Sci.
51
,
627
(
1949
).
32.
A.
Ishihara
,
J. Chem. Phys.
18
,
1446
(
1950
);
A.
Ishihara
,
J. Chem. Phys.
19
,
1142
(
1951
).
33.
M. A.
Tracy
and
R.
Pecora
,
Annu. Rev. Phys. Chem.
43
,
525
(
1992
).
34.
H. Tj.
Goinga
and
R.
Pecora
,
Macromolecules
24
,
6128
(
1991
).
35.
M. E.
Ferrari
and
V. A.
Bloomfield
,
Macromolecules
25
,
5266
(
1992
).
36.
L.
Wang
,
M.
Garner
, and
H.
Yu
,
Macromolecules
24
,
2368
(
1991
).
37.
D.
Stigter
,
Biopolymers
16
,
1435
(
1977
).
38.
M.
Fixman
and
J.
Skolnick
,
Macromolecules
11
,
863
(
1978
).
39.
A.
Stroobants
,
H. N. W.
Lekkerkerker
, and
T.
Odijk
,
Macromolecules
19
,
2232
(
1986
).
40.
T.
Katoh
and
T.
Ohitsuki
,
J. Polym. Sci., Polym. Phys. Ed.
20
,
2167
(
1982
).
41.
W.
Eimer
and
R.
Pecora
,
J. Chem. Phys.
94
,
2324
(
1991
).
42.
B.
Weyerich
,
B.
D’Aguanno
,
E.
Canessa
, and
R.
Klein
,
Faraday Discuss. Chem. Soc.
90
,
245
(
1990
).
43.
Th.
Kirchhoff
,
H.
Löwen
, and
R.
Klein
,
Phys. Rev. E
53
,
5011
(
1996
).
44.
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
213
(
1982
);
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
229
(
1982
).
45.
S. W.
Provencher
,
Makromol. Chem.
180
,
201
(
1979
).
46.
M. M.
Tirado
and
J.
Garcia de la Torre
,
J. Chem. Phys.
71
,
2581
(
1979
);
M. M.
Tirado
and
J.
Garcia de la Torre
,
J. Chem. Phys.
,
73
,
1986
(
1980
).
47.
P. N. Pusey and R. J. A. Tough in Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, edited by R. Pecora (Plenum, New York, 1985), Chap. 4.
This content is only available via PDF.
You do not currently have access to this content.