The optical response of a two-site system driven by a pair of optical pulses in an interferometric set up has been studied theoretically by applying the density operator formalism. The one-exciton approach is taken for modeling two coupled two-level systems (TLS), the external field is presented semiclassically and bath-induced dissipative processes are included. In the δ-pulse limit the population of the excited state has been formulated to the lowest order perturbation expansion in the external field. In the limit of slow luminescence the interferogram of time-integrated total fluorescence has been calculated for pulses with constant relative phase. For phase-randomized pulses the variance of the correlated fluorescence signal as a function of the pulse delay allows direct interrogation of coherent transients and dephasing processes. Our analysis follows the principle of coherence observation by interference noise, COIN [O. Kinrot, I. Sh. Averbukh, and Y. Prior, Phys. Rev. Lett. 75, 3822 (1995)], but is a generalization of this concept to expand on electronically interacting TLS. The theoretical results demonstrate that analysis of fluorescence interference fluctuations may provide a powerful diagnostic tool for probing the initial quantum coherence of energy transfer, i.e., excitation oscillations by employing fs-fluorescence correlation measurements in stable interferometric configurations.

1.
P. W.
Bohm
,
Annu. Rev. Phys. Chem.
44
,
37
(
1993
).
2.
J-Aggregates, edited by T. Kobayashi (World Scientific, Singapore 1996).
3.
B. Mollay and H. F. Kauffmann, in Disorder Effects and Relaxational Processes, edited by R. Richert and A. Blumen (Springer-Verlag, Berlin-Heidelberg, 1994).
4.
R.
van Grondelle
,
J. P.
Dekker
,
T.
Gilbro
, and
V.
Sundström
,
Biochim. Biophys. Acta
1187
,
1
(
1994
).
5.
A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971), Chap. XIII, pp. 431ff;
C.
Aslangul
and
P.
Kottis
,
Phys. Rev. B
10
,
4364
(
1974
);
C.
Aslangul
and
P.
Kottis
,
Adv. Chem. Phys.
XLI
,
321
(
1980
).
6.
M.
Kasha
,
H. R.
Rawls
, and
M.
Ashraf El-Bayoumi
,
Pure Appl. Chem.
11
,
371
(
1965
).
7.
D. H.
Burland
and
A. H.
Zewail
,
Adv. Chem. Phys.
XL
,
369
(
1979
).
8.
Sh.
Speiser
,
Chem. Rev.
96
,
6
,
1953
(
1996
).
9.
Y. R.
Kim
and
R.
Hochstrasser
,
Chem. Phys.
136
,
311
(
1989
).
10.
For example,
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
);
B.
Carmeli
and
D.
Chandler
,
J. Chem. Phys.
82
,
3400
(
1985
);
R.
Silbey
and
R. A.
Harris
,
J. Chem. Phys.
80
,
2615
(
1984
).
11.
B. J.
West
and
K.
Lindenberg
,
J. Chem. Phys.
83
,
4118
(
1985
);
D. W.
Brown
,
K.
Lindenberg
, and
B. J.
West
,
J. Chem. Phys.
83
,
4136
(
1985
).
12.
H. W. H.
Lee
and
M. D.
Fayer
,
J. Chem. Phys.
84
,
5463
(
1986
);
B. B.
Laird
,
J.
Budimir
, and
J. L.
Skinner
,
J. Chem. Phys.
94
,
4391
(
1991
).
13.
P.
Reineker
, in
Exciton Dynamics in Molecular Crystals and Aggregation
,
Springer Tracts Mod. Phys.
94
,
111
(
1982
);
V.
Čápek
and
V.
Szöcs
,
Phys. Status Solidi B
131
,
667
(
1985
).
14.
W. T.
Pollard
and
R. A.
Friesner
,
J. Chem. Phys.
100
,
5054
(
1994
);
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
,
Adv. Chem. Phys.
XCIII
,
77
(
1996
).
15.
F.
Zhu
,
C.
Galli
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
98
,
1042
(
1993
);
F.
Zhu
,
C.
Galli
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
98
,
9222
(
1993
).
16.
T.
Kato
and
Y.
Fujimura
,
Chem. Phys.
202
,
95
(
1996
).
17.
P.-O.
Westlund
and
H.
Wennerstroem
,
J. Chem. Phys.
99
,
6583
(
1993
);
L. B.-A.
Johansson
,
P.
Edman
, and
P.-O.
Westlund
,
J. Chem. Phys.
105
,
10
896
(
1996
).
18.
T. S.
Rahman
,
R. S.
Knox
, and
V. M.
Kenkre
,
Chem. Phys.
44
,
197
(
1979
).
19.
S. G.
Johnson
and
G. J.
Small
,
J. Phys. Chem.
95
,
471
(
1991
).
20.
N. R. S.
Reddy
,
H.
van Amerongen
,
S. L. S.
Kwa
,
R.
van Grondelle
, and
G. J.
Small
,
J. Phys. Chem.
98
,
4729
(
1994
).
21.
K.
Wynne
and
R. M.
Hochstrasser
,
Chem. Phys.
171
,
179
(
1993
);
K.
Wynne
and
R. M.
Hochstrasser
,
Chem. Phys.
173
,
539
(
1993
);
K.
Wynne
and
R. M.
Hochstrasser
,
J. Raman Spectrosc.
26
,
562
(
1995
);
C.
Galli
,
K.
Wynne
,
S. M.
Lecours
,
M. J.
Therien
, and
R. M.
Hochstrasser
,
Chem. Phys. Lett.
206
,
493
(
1993
).
22.
R. S.
Knox
and
D.
Gülen
,
Physica A
57
,
40
(
1993
).
23.
A.
Matro
and
J. A.
Cina
,
J. Phys. Chem.
99
,
2568
(
1995
).
24.
W. F.
Beck
and
K.
Sauer
,
J. Phys. Chem.
96
,
4658
(
1992
).
25.
M. D.
Edington
,
R. E.
Ritter
, and
W. F.
Beck
,
J. Phys. Chem.
99
,
15
699
(
1995
).
26.
M. D.
Edington
,
R. E.
Ritter
, and
W. F.
Beck
,
J. Phys. Chem.
100
,
14
206
(
1996
).
27.
S. E.
Bradforth
,
R.
Jimenez
,
F.
van Mourik
,
R.
van Grondelle
, and
G. R.
Fleming
,
J. Phys. Chem.
99
,
16
191
(
1995
).
28.
R. J.
Stanley
,
B.
King
, and
S. G.
Boxer
,
J. Phys. Chem.
100
,
12
052
(
1996
).
29.
For example, Femtochemistry, edited by J. Manz and L. Woeste (VCH, Weinheim, New York, 1995), Vols. 1 and 2.
30.
N. F.
Scherer
,
A. J.
Ruggiero
,
M.
Du
, and
G. R.
Fleming
,
J. Chem. Phys.
93
,
856
(
1990
);
N. F.
Scherer
,
R. J.
Carlson
,
A.
Matro
,
M.
Du
,
A. J.
Ruggiero
,
V.
Romero-Rochin
,
J. A.
Cuna
,
G. R.
Fleming
, and
S. A.
Rice
,
J. Chem. Phys.
95
,
1487
(
1991
);
L. D.
Ziegler
and
N. F.
Scherer
,
J. Chem. Phys.
97
,
4704
(
1992
).
31.
O.
Kinrot
,
I. Sh.
Averbukh
, and
Y.
Prior
,
Phys. Rev. Lett.
75
,
3822
(
1995
).
32.
C. Leichtle, Wave Packets in Atomic, Molecular and Quantum-Optical Systems, Thesis, University Ulm, Shaker Verlag, 1997.
33.
C.
Leichtle
,
W. P.
Schleich
,
I. Sh.
Averbukh
, and
M.
Shapiro
,
J. Chem. Phys.
108
,
6057
(
1998
).
34.
T.
Baumert
,
M.
Grosser
,
R.
Thalweiser
, and
G.
Gerber
,
Phys. Rev. Lett.
67
,
3753
(
1991
);
T.
Baumert
,
V.
Engel
,
C.
Röttgermann
,
W. T.
Strunz
, and
G.
Gerber
,
Chem. Phys. Lett.
191
,
639
(
1992
);
T.
Baumert
,
V.
Engel
,
C.
Meier
, and
G.
Gerber
,
Chem. Phys. Lett.
200
,
488
(
1992
);
T. Baumert, R. Thalweiser, V. Weiss, and G. Gerber in Ref. 29, Vol. 2, p. 397.
35.
Ch. Meier and V. Engel in Ref. 29, Vol. 1, p. 369.
36.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
37.
K. Blum, Density Matrix Theory and Applications (Plenum, New York 1981).
38.
G. Mahler and V. A. Weberuß, Quantum Networks: Dynamics of Open Nanostructures (Springer, Heidelberg 1995).
39.
L. Allen and J. H. Eberly, Optical Resonance and Two-Level Systems (Dover, New York, 1987).
40.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
41.
S. Wolfram, Mathematica, a system of doing mathematics by computer, 2nd ed. (Addison-Wesley, Redwood City, 1991).
42.
B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Mongan, and S. M. Watt, MAPLE Reference Manual (Springer-Verlag, New York, 1991).
43.
V. Szöcs and H. F. Kauffmann, in Proceedings of the 2nd Int. Conf. Excitonic Processes in Cond. Matter (EXCON, Gorisch, Germany), edited by M. Schreiber (Dresden University Press, 1996), p. 343.
44.
V.
Szöcs
and
H. F.
Kauffmann
,
J. Lumin.
76&77
,
145
(
1998
).
45.
A. Tortschanoff, K. Brunner, Ch. Warmuth, and H. F. Kauffmann, Coherence from Femtosecond Fluorescence Interference Noise-Terahertz Beating in Pentacene, XIth International Conference on Ultrafast Phenomena, Extended Proc., edited by T. Elsaesser, W. Zinth, D. Wiersma, and J. Fujimoto; Garmisch-Partenkirchen, Germany, July 12–17, 1998.
46.
W. E. Baylis, Theoretical methods in the physical sciences: an introduction to problem solving using Maple V (Birkhäuser, Boston, MA, 1994).
This content is only available via PDF.
You do not currently have access to this content.