Biopolymers adsorb on cell and virus surfaces with great specificity. Recently, theoretical and computational studies have inquired as to whether there are any universal design strategies that nature employs in order to affect such recognition. Specifically, the efficacy of multifunctionality and quenched disorder as essential design strategies has been explored. It has been found that when random heteropolymers interact with disordered multifunctional surfaces, a sharp transition from weak to strong adsorption occurs when the statistics characterizing the sequence and surface site distributions are related in a special way. The aforementioned studies consider the intersegment interactions to be much weaker than the surface site interactions. In this work we use nondynamic ensemble growth Monte Carlo simulations to study the effect of the competition between frustrating intersegment and segment–surface interactions. We find that as the intersegment interactions become stronger, the transition from weak to strong adsorption occurs at higher surface disorder strengths. This trend is reversed beyond a threshold strength of the intersegment interactions because interactions with the surface are no longer able to “unravel” the dominant conformations favored by the intersegment interactions.

1.
J. D.
Bryngelson
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. USA
84
,
7524
(
1987
).
2.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Biophys. Chem.
34
,
187
(
1989
).
3.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Nature (London)
346
,
773
(
1990
).
4.
H. S.
Chan
and
K. A.
Dill
,
Phys. Today
46
,
24
(
1993
).
5.
H.
Frauenfelder
and
P. G.
Wolynes
,
Phys. Today
47
,
57
(
1994
).
6.
V. S.
Pande
,
A. Yu.
Grossberg
, and
T.
Tanaka
,
Proc. Natl. Acad. Sci. USA
91
,
12972
(
1994
).
7.
A.
Sali
,
E. I.
Shakhnovich
, and
M.
Karplus
,
Nature (London)
369
,
248
(
1994
).
8.
V. S.
Pande
,
A. Yu.
Grossberg
, and
T.
Tanaka
,
Biophys. J.
73
,
3192
(
1997
).
9.
A.
Irback
,
C.
Peterson
, and
F.
Potthast
,
Proc. Natl. Acad. Sci. USA
91
,
9533
(
1996
).
10.
G. H.
Fredrickson
and
S. T.
Milner
,
Phys. Rev. Lett.
67
,
835
(
1991
).
11.
G. H.
Fredrickson
,
S. T.
Milner
, and
L.
Leibler
,
Macromolecules
25
,
6341
(
1993
).
12.
A.
Nesarikar
,
M. O.
de la Cruz
, and
B.
Crist
,
J. Chem. Phys.
98
,
7385
(
1993
).
13.
E. I.
Shakhnovich
and
A. M.
Gutin
,
J. Phys. (Paris)
50
,
1843
(
1989
).
14.
E. I.
Shakhnovich
and
A. M.
Gutin
,
J. Phys. A
22
,
1647
(
1989
).
15.
V. S.
Pande
,
A. Yu.
Grosberg
,
C.
Joerg
,
M.
Kardar
, and
T.
Tanaka
,
Phys. Rev. Lett.
77
,
3565
(
1996
).
16.
C. M.
Marques
and
J. F.
Joanny
,
Macromolecules
23
,
268
(
1990
).
17.
T.
Cosgrove
,
N. A.
Finch
, and
J. R. P.
Webster
,
Macromolecules
23
,
3353
(
1990
).
18.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
101
,
11
(
1994
).
19.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
103
,
10733
(
1995
).
20.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
104
,
7306
(
1996
).
21.
C. A.
Dai
,
B. J.
Dair
,
K. H.
Dai
,
C. K.
Ober
, and
E. J.
Kramer
,
Phys. Rev. Lett.
73
,
2472
(
1994
).
22.
D.
Gersappe
and
A. C.
Balazs
,
Phys. Rev. E
52
,
5061
(
1995
).
23.
S. T.
Milner
and
G. H.
Fredrickson
,
Macromolecules
28
,
7953
(
1995
).
24.
G. D.
Smith
,
T. P.
Russell
,
R.
Kulasekere
,
J. F.
Ankner
, and
H.
Kaiser
,
Macromolecules
29
,
4120
(
1996
).
25.
E. I.
Shakhnovich
,
Curr. Opin. Struct. Biol.
7
,
29
(
1997
).
26.
S.
Takada
and
P. G.
Wolynes
,
J. Chem. Phys.
107
,
9585
(
1997
).
27.
V. S.
Pande
,
A. Yu.
Grosberg
, and
T.
Tanaka
,
Folding & Design
2
,
109
(
1997
).
28.
V. S.
Pande
,
A. Yu.
Grosberg
,
T.
Tanaka
, and
D. S.
Rokhsar
,
Curr. Opin. Struct. Biol.
8
,
68
(
1998
).
29.
V. S.
Pande
,
A. Yu
Grosberg
, and
T.
Tanaka
,
J. Phys. A
28
,
3657
(
1995
).
30.
A. K.
Chakraborty
and
E. I.
Shakhnovich
,
J. Chem. Phys.
103
,
10751
(
1995
).
31.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
).
32.
S.
Srebnik
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
77
,
3157
(
1996
).
33.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Chem. Phys. Lett.
280
,
46
(
1997
).
34.
A. K.
Chakraborty
and
D.
Bratko
,
J. Chem. Phys.
108
,
1676
(
1998
).
35.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Comput. Theor. Polym. Sci.
8
,
113
(
1998
).
36.
R. J.
Todd
,
R. D.
Johnson
, and
F. H.
Arnold
,
J. Chromatogr.
662
,
13
(
1994
).
37.
S.
Mallik
,
S. D.
Plunkett
,
P. K.
Dhal
,
R. D.
Johnson
,
D.
Pack
,
D.
Shnek
, and
F. H.
Arnold
,
New J. Chem.
18
,
299
(
1994
).
38.
R. D.
Johnson
,
Z. G.
Wang
, and
F. H.
Arnold
,
J. Phys. Chem.
100
,
5134
(
1996
).
39.
A.
Spalstein
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
113
,
686
(
1991
).
40.
M.
Mammen
,
G.
Dahmann
, and
G. M.
Whitesides
,
J. Med. Chem.
38
,
4179
(
1995
).
41.
M.
Muthukumar
,
J. Chem. Phys.
103
,
4723
(
1995
).
42.
P. G.
Higgs
and
H.
Orland
,
J. Chem. Phys.
95
,
4506
(
1991
).
43.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
J. Chem. Phys.
106
,
1264
(
1997
).
44.
R. C.
Ball
and
M. E.
Cates
,
J. Phys. (Paris)
49
,
2009
(
1988
).
45.
D. Chandler, in Les Houches, Part I, Liquids, Freezing, and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991).
46.
A. K.
Chakraborty
,
D.
Bratko
, and
D.
Chandler
,
J. Chem. Phys.
100
,
1528
(
1994
).
47.
G. G. Odian, Principles of Polymerization (Wiley, New York, 1991).
This content is only available via PDF.
You do not currently have access to this content.