This work focuses on numerical aspects and performances of the hyperquantization algorithm, presented in the preceding paper, for a prototypical atom–diatom reaction. Here we provide also the extensions which allow the treatment of excited electronic surfaces. Test calculations have been carried out on the reaction F+H2 at a total nuclear angular momentum equal to zero, the fine structure of the fluorine atom being also explicitly taken into account. The technique presented is shown to be simple and effective for applications to reactive scattering problems, and the results are competitive with those obtained applying other current methods, especially in the strong triatomic interaction region.

1.
V.
Aquilanti
,
S.
Cavalli
, and
D.
De Fazio
,
J. Chem. Phys.
109
,
3792
(
1998
), preceding paper.
2.
(a)
V.
Aquilanti
and
S.
Cavalli
,
Few-Body Syst., Suppl.
6
,
573
(
1992
);
(b) V. Aquilanti, S. Cavalli, and G. Grossi, in Advances in Molecular Vibrations and Collision Dynamics, edited by J. M. Bowman (JAI, Greenwhich CT, 1993), p. 147;
(c) V. Aquilanti, S. Cavalli, C. Coletti, D. De Fazio, and G. Grossi, in New Methods in Quantum Theory, edited by C. A. Tsipis, V. S. Popov, D. R. Herschbach, and J. S. Avery (Kluwer, Dordrecht, 1996), p. 233.
3.
D. E.
Manolopoulos
,
J. Chem. Soc., Faraday Trans.
93
,
673
(
1997
).
4.
R.
Steckler
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Chem. Phys.
82
,
5499
(
1985
).
5.
J. M.
Launay
and
M.
Le Dourneuf
,
Chem. Phys. Lett.
169
,
473
(
1990
).
6.
G. A.
Parker
and
R. T
Pack
,
J. Chem. Phys.
98
,
6883
(
1992
).
7.
K.
Stark
and
H. J.
Werner
,
J. Chem. Phys.
104
,
6515
(
1996
).
8.
M.
Gilibert
and
M.
Baer
,
J. Phys. Chem.
98
,
12822
(
1994
).
9.
G. D.
Billing
,
L. Yu.
Rusin
, and
M. B.
Sevryuk
,
J. Chem. Phys.
103
,
2482
(
1995
).
10.
B.
Lepetit
,
M.
Le Dourneuf
, and
J. M.
Launay
,
Chem. Phys.
106
,
103
(
1986
).
11.
F.
Rebentrost
and
W. A.
Lester
, Jr.
,
J. Chem. Phys.
67
,
3367
(
1977
).
12.
C. S.
Maierle
,
G. C.
Schatz
,
M. S.
Gordon
,
P.
McCabe
, and
J. N. L.
Connor
,
J. Chem. Soc., Faraday Trans.
93
,
709
(
1997
).
13.
Z.
Bacic
,
J. D.
Kress
,
G. A.
Parker
, and
R. T
Pack
,
J. Chem. Phys.
92
,
2344
(
1990
).
14.
V.
Aquilanti
,
R.
Candori
,
D.
Cappelletti
,
E.
Luzzatti
, and
F.
Pirani
,
Chem. Phys.
145
,
293
(
1990
).
15.
Notations for hyperangles as in Ref. 1.
16.
U.
Fano
,
Phys. Rev. A
24
,
2402
(
1981
).
17.
A.
Ohsaki
and
H.
Nakamura
,
Phys. Rep.
187
,
1
(
1990
).
18.
(a)
V.
Aquilanti
,
S.
Cavalli
, and
G.
Grossi
,
Chem. Phys. Lett.
110
,
43
(
1984
);
(b)
V.
Aquilanti
and
S.
Cavalli
,
Chem. Phys. Lett.
141
,
309
(
1987
);
(c)
V.
Aquilanti
,
S.
Cavalli
,
G.
Grossi
,
V.
Pellizzari
,
M.
Rosi
,
A.
Sgamellotti
, and
F.
Tarantelli
,
Chem. Phys. Lett.
162
,
179
(
1989
).
19.
(a)
V.
Aquilanti
and
G.
Grossi
,
J. Chem. Phys.
73
,
1165
(
1980
);
(b)
V.
Aquilanti
,
P.
Casavecchia
,
G.
Grossi
, and
A.
Laganà
,
J. Chem. Phys.
73
,
1173
(
1980
).
20.
V.
Aquilanti
,
S.
Cavalli
, and
D.
De Fazio
,
J. Phys. Chem.
99
,
15694
(
1995
).
21.
G.
Racah
,
Phys. Rev.
62
,
438
(
1942
).
22.
D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).
23.
C. C. J.
Roothaan
and
S.-T.
Lai
,
Int. J. Quantum Chem.
63
,
57
(
1997
).
24.
T.
Tamura
,
Comput. Phys. Commun.
1
,
337
(
1970
).
25.
(a)
J. G.
Wills
,
Comput. Phys. Commun.
2
,
381
(
1971
);
(b)
K.
Srinivasa Rao
and
K.
Venkatesh
,
Comput. Phys. Commun.
15
,
227
(
1978
).
26.
K.
Schulten
and
R. G.
Gordon
,
J. Math. Phys.
16
,
1961
(
1975
).
27.
K.
Schulten
and
R. G.
Gordon
,
J. Math. Phys.
16
,
1971
(
1975
).
28.
K.
Schulten
and
R. G.
Gordon
,
Comput. Phys. Commun.
11
,
269
(
1976
).
29.
A preliminary discussion and several convergence tests for the asymmetric representation, including also Radau parametrization, have been reported previously. Those results are complementary to the ones presented here and that paper should be consulted for further details which would be too long to present here.
30.
S. Cavalli, V. Aquilanti, and M. Monnerville, Numerical Grid Methods and Their Applications to Schröedinger’s Equation, edited by C. Cerjan (Kluwer, Dordrecht, 1993), p. 25.
31.
(a)
J. M.
Launay
and
M.
Le Dourneuf
,
Chem. Phys. Lett.
163
,
178
(
1989
);
(b)
J. M.
Launay
,
Theor. Chim. Acta
79
,
183
(
1991
).
32.
R. W.
Heather
and
J. C.
Light
,
J. Chem. Phys.
79
,
147
(
1983
).
33.
J. F.
Castillo
,
D. E.
Manolopoulos
,
K.
Stark
, and
H.
Werner
,
J. Chem. Phys.
104
,
6531
(
1996
).
34.
(a)
C.
Lanczos
,
J. Res. Natl. Bur. Stand. Sect. B
45
,
255
(
1950
);
(b)
C.
Lanczos
,
J. Res. Natl. Bur. Stand. Sect. B
49
,
33
(
1952
).
35.
J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I, Theory (Wiley, New York, 1985).
36.
Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halsted Wiley, New York, 1992).
37.
B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).
38.
T.
Ericsson
and
A.
Ruhe
,
Math. Comput.
35
,
1251
(
1980
).
39.
R. Lehoucq and D. C. Sorensen, Available from [email protected] (1994).
40.
K. J. Maschoff and D. C. Sorensen, Proceedings of the Copper Mountain Conference on Iterative Methods, 1996, Vol. I (unpublished).
41.
P.
Pendergast
,
Z.
Darakhan
,
E. F.
Hayes
, and
D. C.
Sorensen
,
J. Comput. Phys.
113
,
201
(
1994
).
42.
M. T. Jones and M. L. Patrick, Inst. for Comp. Appl. in Scien. and Eng. (ICASE) NASA, Tecn. Rep. 89-67 (1989).
43.
J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. II, Programs (Wiley, New York, 1985).
44.
Book of Abstracts: Workshop on the Use of Iterative Methods for Large-Scale Eigenvalue Problems May 14–16, 1997 (Argonne National Laboratory, Argonne, IL, 1997).
This content is only available via PDF.
You do not currently have access to this content.