The dynamics of the reaction H2CO+hν(λ≈330 nm)→H+HCO have been studied following excitation of formaldehyde into the Ã(1A2) state, just above the dissociation threshold of the X̃(1A1) state. Formaldehyde was excited via specific J,Ka,Kc rotational states and the ensuing rotational distribution of HCO measured by fully resolving N,Ka,Kc, and J=N±S of the fragment. When only the N and Ka quantum numbers of both formaldehyde and the formyl radical are considered, the distributions are generally modeled well by phase space theory (PST). Within ≈10 cm−1 of the threshold, however, the PST predictions consistently exceed the experimental populations. This was accounted for by the inclusion of a centrifugal barrier in the PST model. The attractive part of the effective centrifugal potential was modeled by a dipole-induced dipole plus dispersion interaction. The barrier is weak and long range (>5 Å). Resolution of Kc in the reaction, in both parent and product, gave large deviations from the PST model. The HCO population distributions separate according to whether Kc was the upper- or lower-energy state. Additionally, the upper/lower preference was sensitive to the choice of Kc in the parent. Insufficient data are currently available to quantify this observation. The product state distribution was also found to be independent of the spin–rotation state of HCO.

1.
H.
Reisler
and
C.
Wittig
,
Annu. Rev. Phys. Chem.
37
,
307
(
1986
).
2.
I.
Nadler
,
D.
Mahgerefteh
,
H.
Reisler
, and
C.
Wittig
,
J. Chem. Phys.
82
,
3885
(
1985
).
3.
S.
Becker
,
C.
Braatz
,
J.
Linder
, and
E.
Tiemann
,
Chem. Phys. Lett.
208
,
15
(
1993
).
4.
J.
Cao
,
H.-P.
Loock
, and
C. X. W.
Qian
,
J. Chem. Phys.
101
,
3395
(
1994
).
5.
D. R.
Cyr
,
R. E.
Continetti
,
R. B.
Metz
,
D. L.
Osborn
, and
D. M.
Neumark
,
J. Chem. Phys.
97
,
4937
(
1992
).
6.
C. G.
Hickman
,
N.
Shaw
,
M. J.
Crawford
,
A. J.
Bell
, and
J. G.
Frey
,
J. Chem. Soc. Faraday Trans.
X
,
1623
(
1993
).
7.
G.
Nan
,
I.
Burak
, and
P. L.
Houston
,
Chem. Phys. Lett.
209
,
383
(
1993
).
8.
S. A.
Reid
,
D. C.
Robie
, and
H.
Reisler
,
J. Chem. Phys.
100
,
4256
(
1994
).
9.
A.
Ogai
,
C. X. W.
Qian
, and
H.
Reisler
,
J. Chem. Phys.
93
,
1107
(
1990
).
10.
L.
Schneider
,
W.
Meier
,
K. H.
Welge
,
M. N. R.
Ashfold
, and
C. M.
Western
,
J. Chem. Phys.
92
,
7027
(
1990
).
11.
M. N. R.
Ashfold
,
R. N.
Dixon
,
S. J.
Irving
,
H.-M.
Koeppe
,
W.
Meier
,
J. R.
Nightingale
,
L.
Schnieder
, and
K. H.
Welge
,
Philos. Trans. R. Soc. London, Ser. A
332
,
375
(
1990
).
12.
D. H.
Mordaunt
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
104
,
6460
(
1996
).
13.
D. H.
Mordaunt
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
104
,
6472
(
1996
).
14.
R.
Ogorzalek Loo
,
H.-P.
Haerri
,
G. E.
Hall
, and
P. L.
Houston
,
J. Chem. Phys.
90
,
4222
(
1989
).
15.
I.
Garcia-Moreno
,
E. R.
Lovejoy
, and
C. B.
Moore
,
J. Chem. Phys.
100
,
8890
(
1994
).
16.
M.
Drabbels
,
C. G.
Morgan
,
D. S.
McGuire
, and
A. M.
Wodtke
,
J. Chem. Phys.
102
,
611
(
1995
).
17.
I.-C.
Chen
,
J.
William
,
H.
Green
, and
C. B.
Moore
,
J. Chem. Phys.
89
,
314
(
1988
).
18.
A. C.
Terentis
,
M.
Stone
, and
S. H.
Kable
,
J. Phys. Chem.
98
,
10802
(
1994
).
19.
S.-H.
Lee
and
I.-C.
Chen
,
J. Chem. Phys.
105
,
4597
(
1996
).
20.
A. C.
Terentis
,
P. T.
Knepp
, and
S. H.
Kable
,
J. Phys. Chem.
99
,
12704
(
1995
).
21.
D. J.
Clouthier
and
D. A.
Ramsay
,
Annu. Rev. Phys. Chem.
34
,
31
(
1983
).
22.
G. W.
Adamson
,
X.
Zhao
, and
R. W.
Field
,
J. Mol. Spectrosc.
160
,
11
(
1993
).
23.
Y. J.
Shiu
and
I.-C.
Chen
,
J. Mol. Spectrosc.
165
,
457
(
1994
).
24.
S.-H.
Lee
and
I.-C.
Chen
,
J. Chem. Phys.
103
,
104
(
1995
).
25.
S.-H.
Lee
,
I.-C.
Chen
,
G. W.
Adamson
, and
R. W.
Field
,
J. Mol. Spectrosc.
182
,
385
(
1996
).
26.
B. F.
Yates
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
93
,
8798
(
1990
).
27.
J. D.
Goddard
,
J. Mol. Struct.
149
,
39
(
1987
).
28.
M. R.
Peterson
,
G. R.
De Mare
,
I. G.
Csizmadia
, and
O. P.
Strausz
,
J. Mol. Struct.
86
,
131
(
1981
).
29.
M.-C.
Chuang
,
M. F.
Foltz
, and
C. B.
Moore
,
J. Chem. Phys.
87
,
3855
(
1987
).
30.
R. D.
van Zee
,
M. F.
Foltz
, and
C. B.
Moore
,
J. Chem. Phys.
99
,
1664
(
1993
).
31.
P. L.
Houston
and
C. B.
Moore
,
J. Chem. Phys.
65
,
757
(
1976
).
32.
M.
Pealat
,
D.
Debarre
,
J. M.
Marie
,
J. P. E.
Taran
,
A.
Tramer
, and
C. B.
Moore
,
Chem. Phys. Lett.
98
,
299
(
1983
).
33.
P.
Ho
,
D. J.
Bamford
,
R. J.
Buss
,
Y. T.
Lee
, and
C. B.
Moore
,
J. Chem. Phys.
76
,
3630
(
1982
).
34.
D. J.
Bamford
,
S. V.
Filseth
,
M. F.
Foltz
,
J. W.
Hepburn
, and
C. B.
Moore
,
J. Chem. Phys.
82
,
3032
(
1985
).
35.
D.
Debarre
,
M.
Lefebvre
,
M.
Péalat
,
J.-P. E.
Taran
,
D. J.
Bamford
, and
C. B.
Moore
,
J. Chem. Phys.
83
,
4476
(
1985
).
36.
P.
Ho
and
A. V.
Smith
,
Chem. Phys. Lett.
90
,
407
(
1982
).
37.
R. D.
McQuigg
and
J. G.
Calvert
,
J. Am. Chem. Soc.
91
,
1590
(
1969
).
38.
T. J.
Butenhoff
,
K. L.
Carleton
,
M.-C.
Chuang
, and
C. B.
Moore
,
J. Chem. Soc. Faraday Trans.
85
,
1155
(
1989
).
39.
T. J.
Butenhoff
,
K. L.
Carleton
, and
C. B.
Moore
,
J. Chem. Phys.
92
,
377
(
1990
).
40.
T. J.
Butenhoff
,
K. L.
Carleton
,
R. D.
VanZee
, and
C. B.
Moore
,
J. Chem. Phys.
94
,
1947
(
1991
).
41.
K. L.
Carleton
,
T. J.
Butenhoff
, and
C. B.
Moore
,
J. Chem. Phys.
93
,
3907
(
1990
).
42.
D. R.
Guyer
,
W. F.
Polik
, and
C. B.
Moore
,
J. Chem. Phys.
84
,
6519
(
1986
).
43.
C. B.
Moore
and
I. W. M.
Smith
,
J. Phys. Chem.
100
,
12848
(
1996
).
44.
W. F.
Polik
,
D. R.
Guyer
, and
C. B.
Moore
,
J. Chem. Phys.
92
,
3453
(
1990
).
45.
R. D.
van Zee
,
C. D.
Pibel
,
T. J.
Butenhoff
, and
C. B.
Moore
,
J. Chem. Phys.
97
,
3235
(
1992
).
46.
J. C.
Weisshaar
and
C. B.
Moore
,
J. Chem. Phys.
70
,
5135
(
1979
).
47.
E. S.
Yeung
and
C. B.
Moore
,
J. Chem. Phys.
58
,
3988
(
1973
).
48.
E. S.
Yeung
and
C. B.
Moore
,
J. Chem. Phys.
60
,
2139
(
1974
).
49.
W. F.
Polik
,
C. B.
Moore
, and
W. H.
Miller
,
J. Chem. Phys.
89
,
3584
(
1988
).
50.
W. F.
Polik
,
D. R.
Guyer
,
W. H.
Miller
, and
C. B.
Moore
,
J. Chem. Phys.
92
,
3471
(
1990
).
51.
R.
Hernandez
,
W. H.
Miller
,
C. B.
Moore
, and
D. R.
Guyer
,
J. Chem. Phys.
99
,
950
(
1993
).
52.
A. C.
Terentis
and
S. H.
Kable
,
Chem. Phys. Lett.
258
,
626
(
1996
).
53.
S.-H.
Lee
and
I.-C.
Chen
,
J. Chem. Phys.
105
,
2583
(
1996
).
54.
T. J.
Sears
,
Comput. Phys. Commun.
34
,
123
(
1984
).
55.
J. M.
Brown
,
H. E.
Radford
, and
T. J.
Sears
,
J. Mol. Spectrosc.
148
,
20
(
1991
).
56.
C. M. L.
Kerr
,
D. C.
Moule
, and
D. A.
Ramsay
,
Can. J. Phys.
61
,
6
(
1983
).
57.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
42
,
3281
(
1965
).
58.
P.
Pechukas
,
J. C.
Light
, and
C.
Rankin
,
J. Chem. Phys.
44
,
794
(
1966
).
59.
M.
Hunter
,
S. A.
Reid
,
D. C.
Robie
, and
H.
Reisler
,
J. Chem. Phys.
99
,
1093
(
1993
).
60.
P. W. Atkins, Physical Chemistry, 5th ed. (Oxford University Press, Oxford, 1994).
61.
G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules (van Nostrand, Princeton, 1966).
62.
Gaussian 94, Revision B.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, C. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople (Gaussian Inc., Pittsburgh, PA, 1995).
63.
P. T.
Knepp
,
A. C.
Terentis
, and
S. H.
Kable
,
J. Chem. Phys.
103
,
194
(
1995
).
64.
D. C.
Robie
,
M.
Hunter
,
J. L.
Bates
, and
H.
Reisler
,
Chem. Phys. Lett.
193
,
413
(
1992
).
65.
R. L.
Miller
,
S. H.
Kable
,
P. L.
Houston
, and
I.
Burak
,
J. Chem. Phys.
96
,
332
(
1992
).
66.
N.
Sivakumar
,
G. E.
Hall
,
P. L.
Houston
,
J. W.
Hepburn
, and
I.
Burak
,
J. Chem. Phys.
88
,
3692
(
1988
).
67.
C. X. W.
Qian
,
L.
Iwata
, and
H.
Reisler
,
J. Chem. Phys.
92
,
4296
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.