The recently proposed coupled channel density matrix (CCDM) method for nondissipative dynamics [L. Pesce and P. Saalfrank, Chem. Phys. 219, 43 (1997)], is extended to open quantum systems. This method, which is the density matrix analogue of the coupled channel wave packet (CCWP) method in Schrödinger wave mechanics, allows for the solution of nuclear Liouville–von Neumann equations in more than one dimension including unbound modes. A semiphenomenological, Markovian, and trace-conserving dissipative model within the dynamical semigroup approach is suggested, and efficient numerical schemes for its implementation are presented. Using a two-mode model, we apply the dissipative CCDM method to the problem of vibrationally excited gas-phase hydrogen molecules, relaxing during the scattering from a cold, metallic, and nondissociative surface. The significance of a relaxation mechanism based on electron-hole pair creation in a metallic substrate is addressed. The dependence of the survival probability of the vibrationally excited molecules on the dissipative model parameters, on their initial translational energy, and on isotopic substitution is examined and rationalized on the basis of a simple classical kinetic model.

1.
R.
Kosloff
,
Annu. Rev. Phys. Chem.
45
,
145
(
1994
);
N. Balakrishnan, C. Kalyanaraman, and N. Sathyamurthy, Phys. Rep. 280, 79 (1997).
2.
R. B.
Gerber
,
Chem. Rev.
87
,
29
(
1987
), and references therein.
3.
M.
Gostein
,
H.
Parhikhteh
, and
G. O.
Sitz
,
Phys. Rev. Lett.
75
,
342
(
1995
).
4.
Experiment:
M.
Morin
,
N. J.
Levinos
, and
A. L.
Harris
,
J. Chem. Phys.
96
,
3950
(
1992
);
Theory:
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
);
M.
Head-Gordon
and
J. C.
Tully
,
Phys. Rev. B
46
,
1853
(
1992
).
5.
Experiment: See, for example,
C. T.
Rettner
,
D. J.
Auerbach
,
J. C.
Tully
, and
A. W.
Kleyn
,
J. Phys. Chem.
100
,
13021
(
1996
);
Theory:
J. C.
Tully
,
Annu. Rev. Phys. Chem.
31
,
319
(
1980
);
B.
Jackson
,
Comput. Phys. Commun.
80
,
119
(
1994
).
6.
B.
Jackson
,
Chem. Phys. Lett.
270
,
484
(
1997
).
7.
R. E.
Walkup
,
D. M.
Newns
, and
Ph.
Avouris
,
J. Electron Spectrosc. Relat. Phenom.
64/65
,
523
(
1993
).
8.
S.
Gao
,
B. I.
Lundqvist
, and
W.
Ho
,
Surf. Sci.
341
,
L1031
(
1995
).
9.
S.
Efrima
,
K. F.
Freed
,
C.
Jedrzejeck
, and
H.
Metiu
,
Chem. Phys. Lett.
74
,
43
(
1980
);
R.
Kosloff
and
C.
Cerjan
,
J. Chem. Phys.
81
,
3722
(
1984
).
10.
J. T.
Muckerman
and
T.
Uzer
,
J. Chem. Phys.
90
,
1968
(
1989
);
Y.
Guan
,
J. T.
Muckerman
, and
T.
Uzer
,
J. Chem. Phys.
93
,
4400
(
1990
).
11.
K. Blum, Density matrix theory and applications (Plenum, New York, 1981).
12.
Y. J.
Yan
and
S.
Mukamel
,
J. Chem. Phys.
88
,
5735
(
1988
);
Y. J.
Yan
and
S.
Mukamel
,
J. Chem. Phys.
89
,
5160
(
1988
);
Y. J.
Yan
and
S.
Mukamel
,
Phys. Rev. A
41
,
6485
(
1990
).
13.
M.
Berman
and
R.
Kosloff
,
Comput. Phys. Commun.
63
,
1
(
1991
);
M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A: Math. Gen. 25, 1283 (1992).
14.
J. M.
Jean
,
R. A.
Friesner
, and
G. R.
Fleming
,
Chem. Phys.
96
,
5827
(
1992
);
W. T.
Pollard
and
R. A.
Friesner
,
J. Chem. Phys.
100
,
5054
(
1994
);
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
,
Adv. Chem. Phys.
93
,
77
(
1996
).
15.
V.
May
and
M.
Schreiber
,
Phys. Rev. A
45
,
2868
(
1992
);
V.
May
,
O.
Kühn
, and
M.
Schreiber
,
J. Phys. Chem.
97
,
12591
(
1993
);
O.
Brackhagen
,
O.
Kühn
,
J.
Manz
,
V.
May
, and
R.
Meyer
,
J. Chem. Phys.
100
,
9007
(
1994
).
16.
A. O.
Caldeira
and
A.
Legget
,
Physica A
121
,
587
(
1983
);
I.
Oppenheim
and
V.
Romero-Rochin
,
Physica A
147
,
184
(
1987
);
A.
Suárez
,
R.
Silbey
, and
I.
Oppenheim
,
J. Chem. Phys.
97
,
5101
(
1992
);
A. M.
Walch
and
R. D.
Coalson
,
Chem. Phys. Lett.
198
,
293
(
1992
).
17.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
18.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
19.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
20.
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
,
J. Math. Phys.
17
,
821
(
1976
).
21.
R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).
22.
D.
Kohen
,
C. C.
Marston
, and
D. J.
Tannor
,
J. Chem. Phys.
107
,
5236
(
1997
).
23.
O.
Kühn
and
V.
May
,
Chem. Phys.
204
,
99
(
1996
).
24.
E. R.
Bittner
and
J. C.
Light
,
J. Chem. Phys.
101
,
2446
(
1994
).
25.
D.
Bekšić
and
D. A.
Micha
,
J. Chem. Phys.
103
,
3795
(
1995
).
26.
P.
Saalfrank
,
R.
Baer
, and
P.
Saalfrank
,
Chem. Phys. Lett.
230
,
463
(
1994
);
P.
Saalfrank
and
R.
Kosloff
,
J. Chem. Phys.
105
,
2441
(
1996
).
27.
B.
Hellsing
and
H.
Metiu
,
Chem. Phys. Lett.
127
,
45
(
1986
).
28.
J.
Dalibard
,
Y.
Castin
, and
K.
Mo/lmer
,
Phys. Rev. Lett.
68
,
580
(
1992
);
K.
Mo/lmer
,
Y.
Castin
, and
J.
Dalibard
,
J. Opt. Soc. Am. B
10
,
524
(
1993
).
29.
R.
Dum
,
P.
Zoller
, and
H.
Ritsch
,
Phys. Rev. A
45
,
4879
(
1992
);
R.
Dum
,
A. S.
Parkins
,
P.
Zoller
, and
C. W.
Gardiner
,
Phys. Rev. A
46
,
4382
(
1992
).
30.
W. K.
Lai
,
K.-A.
Suominen
,
B. M.
Garraway
, and
S.
Stenholm
,
Phys. Rev. A
47
,
4779
(
1993
);
J.
Steinbach
,
B. M.
Garraway
, and
P. L.
Knight
,
Phys. Rev. A
51
,
3302
(
1995
).
31.
H.-P.
Breuer
and
F.
Petruccione
,
Phys. Rev. E
52
,
428
(
1995
).
32.
B.
Wolfseder
and
W.
Domcke
,
Chem. Phys. Lett.
235
,
371
(
1995
).
33.
P.
Saalfrank
,
Chem. Phys.
211
,
265
(
1996
).
34.
K.
Finger
and
P.
Saalfrank
,
Chem. Phys. Lett.
268
,
291
(
1997
).
35.
N.
Gisin
and
I. C.
Percival
,
J. Phys. A
25
,
5677
(
1992
);
N.
Gisin
and
I. C.
Percival
,
Phys. Lett. A
167
,
315
(
1992
);
N.
Gisin
and
I. C.
Percival
,
J. Phys. A
26
,
2245
(
1993
).
36.
B. M.
Garraway
and
P. L.
Knight
,
Phys. Rev. A
49
,
1266
(
1994
).
37.
T.
Gerdts
and
U.
Manthe
,
J. Chem. Phys.
106
,
3017
(
1996
).
38.
A.
Bartana
,
R.
Kosloff
, and
D.
Tannor
,
J. Chem. Phys.
99
,
196
(
1993
);
U.
Banin
,
A.
Bartana
,
S.
Ruhman
, and
R.
Kosloff
,
J. Chem. Phys.
101
,
8461
(
1994
).
39.
Ch.
Scheurer
and
P.
Saalfrank
,
Chem. Phys. Lett.
245
,
201
(
1995
);
Ch.
Scheurer
and
P.
Saalfrank
,
J. Chem. Phys.
104
,
2869
(
1996
).
40.
L.
Pesce
and
P.
Saalfrank
,
Chem. Phys.
219
,
43
(
1997
).
41.
R. C.
Mowrey
and
D. J.
Kouri
,
Chem. Phys. Lett.
119
,
285
(
1985
);
R. C.
Mowrey
and
D. J.
Kouri
,
J. Chem. Phys.
84
,
6466
(
1986
).
42.
H. F.
Bowen
,
D. J.
Kouri
,
R. C.
Mowrey
,
A. T.
Yinnon
, and
R. B.
Gerber
,
J. Chem. Phys.
99
,
704
(
1993
);
G. J.
Kroes
and
R. C.
Mowrey
,
J. Chem. Phys.
101
,
808
(
1994
);
G. R.
Darling
and
S.
Holloway
,
J. Chem. Phys.
101
,
3268
(
1994
);
G. J.
Kroes
and
R. C.
Mowrey
,
J. Chem. Phys.
103
,
2186
(
1995
);
L. Pesce and G. F. Tantardini, Vuoto Scienza e Tecnologia 25, 111 (1996).
43.
B.
Jackson
and
H.
Metiu
,
J. Chem. Phys.
86
,
1026
(
1987
).
44.
A.
Gross
,
S.
Wilke
, and
M.
Scheffler
,
Phys. Rev. Lett.
75
,
2718
(
1995
);
A.
Gross
,
S.
Wilke
, and
M.
Scheffler
,
Surf. Sci.
357
,
614
(
1996
).
45.
G. J.
Kroes
,
E. J.
Baerends
, and
R. C.
Mowrey
,
Phys. Rev. Lett.
78
,
3583
(
1997
).
46.
J.
Dai
and
J. C.
Light
,
J. Chem. Phys.
107
,
1676
(
1997
).
47.
G. R.
Darling
and
S.
Holloway
,
Rep. Prog. Phys.
58
,
1595
(
1996
).
48.
We took a very high barrier (3.0 eV) to avoid dissociation of the molecule. In the case of dissociation the x mode becomes unbound, and the the CCDM approach inapplicable.
49.
B.
Hammer
and
J.
No/rskov
,
Nature (London)
376
,
238
(
1995
).
50.
G. R. Darling and S. Holloway, Faraday Discuss. Chem. Soc. 96, 43 (1993).
51.
G.
Ashkenazi
,
R.
Kosloff
,
S.
Ruhman
, and
H.
Tal-Ezer
,
J. Chem. Phys.
103
,
10005
(
1995
).
52.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
53.
G. J.
Kroes
,
E. J.
Baerends
, and
R. C.
Mowrey
,
Phys. Rev. B
53
,
10397
(
1996
).
54.
C. T.
Rettner
,
F.
Fabre
,
J.
Kimman
, and
D. J.
Auerbach
,
Phys. Rev. Lett.
55
,
1904
(
1985
).
55.
E. K.
Watts
,
J. L. W.
Siders
, and
G. O.
Sitz
,
Surf. Sci.
374
,
191
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.