We report a combined experimental and theoretical study of the xenon monohalide radicals XeX (X=F, Cl, Br, and I) together with their cationic and anionic counterparts XeX+ and XeX. In brief, the XeX+ cations are characterized by reasonably strong chemical bonds with significant charge-transfer stabilization, except for X=F. In contrast, the neutral XeX radicals as well as the XeX anions can mostly be described in terms of van der Waals complexes and exhibit bond strengths of only a few tenths of an electron volt. For both XeX and XeX the fluorides (X=F) are the most strongly bound among the xenon halides due to significant covalency in the neutral radical, and to the large charge density on fluoride in the XeX anion, respectively. Mass spectrometric experiments reveal the different behavior of xenon fluoride as compared to the other halides, and in kiloelectron-volt collisions sequential electron transfer according to XeX+→XeX→XeX can be achieved allowing one to generate neutral XeX radicals with lifetimes of at least a few microseconds for X=F and I.

1.
E.
Velazco
and
D. W.
Setzer
,
J. Chem. Phys.
62
,
1990
(
1975
).
2.
K.
Seppelt
and
D.
Lentz
,
Prog. Inorg. Chem.
29
,
167
(
1982
).
3.
For a review on compounds of light noble gases, see G. Frenking and D. Cremer, Structure and Bonding (Springer, Berlin, 1990), Vol. 73, p. 17.
4.
T. H.
Dunning
, Jr.
and
P. J.
Hay
,
J. Chem. Phys.
69
,
134
(
1978
);
P. J.
Hay
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
69
,
2209
(
1978
).
5.
(a)
J.
Tellinghuisen
,
P. C.
Tellinghuisen
,
G. C.
Tisone
,
J. M.
Hoffman
, and
A. K.
Hays
,
J. Chem. Phys.
68
,
5177
(
1978
);
(b)
P. C.
Tellinghuisen
,
J.
Tellinghuisen
,
J. A.
Coxon
,
J. E.
Velazco
, and
D. W.
Setzer
,
J. Chem. Phys.
68
,
5187
(
1978
);
(c)
J.
Tellinghuisen
,
J. Chem. Phys.
78
,
2374
(
1983
);
(d)
K.
Johnson
and
J.
Tellinghuisen
,
Chem. Phys. Lett.
228
,
363
(
1994
).
6.
XeBr:
J. O.
Clevenger
and
J.
Tellinghuisen
,
J. Chem. Phys.
103
,
9611
(
1995
);
XeI:
D. T.
Radzykewycz
and
J.
Tellinghuisen
,
J. Chem. Phys.
105
,
1330
(
1996
).
7.
XeF:
C. H.
Becker
,
P.
Casavecchia
, and
Y. T.
Lee
,
J. Chem. Phys.
69
,
2377
(
1978
);
XeCl:
V.
Aquilanti
,
D.
Cappelletti
,
V.
Lorent
,
E.
Luzzatti
, and
F.
Pirani
,
Chem. Phys. Lett.
192
,
153
(
1992
);
XeI:
P.
Casavecchia
,
G.
He
,
R. K.
Sparks
, and
Y. T.
Lee
,
J. Chem. Phys.
77
,
1878
(
1982
).
8.
S. P.
Mezyk
,
R.
Cooper
, and
J. G.
Young
,
J. Phys. Chem. A
101
,
2429
(
1997
);
S.
Longo
,
Chem. Phys. Lett.
268
,
306
(
1997
).
9.
G. F.
Adams
and
C. F.
Chabalowski
,
J. Phys. Chem.
98
,
5878
(
1994
);
J.
Styszynski
,
X.
Cao
,
G. L.
Malli
, and
L.
Visscher
,
J. Comput. Chem.
18
,
601
(
1997
).
10.
D. E.
Riederer
, Jr.
,
S. A.
Miller
,
T.
Ast
, and
R. G.
Cooks
,
J. Am. Soc. Mass Spectrom.
4
,
938
(
1993
);
S. D.
Price
,
M.
Manning
, and
S. R.
Leone
,
J. Am. Chem. Soc.
116
,
8673
(
1994
).
11.
M. G.
Thackston
,
F. L.
Eisele
,
W. M.
Pope
,
H. W.
Ellis
,
E. W.
McDaniel
, and
I. R.
Gatland
,
J. Chem. Phys.
73
,
3183
(
1980
);
D. R.
Lamm
et al.,
J. Chem. Phys.
79
,
1965
(
1983
).
12.
Selected reviews about NRMS: A. W. McMahon, S. K. Chowdhury, and A. G. Harrison, Org. Mass Spectrom. 24, 620 (1989);
N.
Goldberg
and
H.
Schwarz
,
Acc. Chem. Res.
27
,
347
(
1994
);
D. V. Zagorevskij and J. L. Holmes, Mass Spectrom. Rev. 13, 133 (1994).
13.
R.
Srinivas
,
D.
Sülzle
,
T.
Weiske
, and
H.
Schwarz
,
Int. J. Mass Spectrom. Ion Processes
107
,
368
(
1991
);
R.
Srinivas
,
D.
Sülzle
,
W.
Koch
,
C. H.
DePuy
, and
H.
Schwarz
,
J. Am. Chem. Soc.
113
,
5970
(
1991
).
14.
P.
Jonathan
,
A. G.
Brenton
,
J. H.
Beynon
, and
R. K.
Boyd
,
Int. J. Mass Spectrom. Ion Processes
76
,
319
(
1987
).
15.
J. E. Huheey, E. A. Keiter, and R. L. Keiter, Anorganische Chemie (de Gruyter, Berlin, 1995), Chap. 17.
16.
J. N.
Harvey
,
D.
Schröder
,
A.
Fiedler
,
C.
Heinemann
, and
H.
Schwarz
,
Chem. Eur. J.
2
,
1230
(
1996
);
D.
Schröder
,
C. A.
Schalley
,
J.
Hrušák
,
N.
Goldberg
, and
H.
Schwarz
,
Chem. Eur. J.
2
,
1235
(
1996
);
J. N.
Harvey
,
D.
Schröder
, and
H.
Schwarz
,
Bull. Soc. Chim. Belge
106
,
447
(
1997
).
17.
MOLPRO 96.4 is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, and R. Lindh.
18.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
19.
A.
Nicklass
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
102
,
8942
(
1995
).
20.
F basis:
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6769
(
1992
);
Cl basis:
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
21.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
22.
A.
Bergner
,
M.
Dolg
,
W.
Kuechle
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
80
,
1431
(
1993
).
23.
M. Dolg, M. Diefenbach (personal communication).
24.
E. C.
Moore
,
Atomic Energy Levels NBS Monogr.
467
,
1
(
1949
);
E. C.
Moore
,
Atomic Energy Levels NBS Monogr.
467
,
2
(
1952
);
E. C.
Moore
,
Atomic Energy Levels NBS Monogr.
467
,
3
(
1958
).
25.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
);
R. J.
Cave
and
E. R.
Davidson
,
J. Chem. Phys.
89
,
6708
(
1988
);
P. G.
Szalay
and
R. J.
Bartlett
,
Chem. Phys. Lett.
214
,
481
(
1993
).
For the application in MOLPRO, see:
H.-J.
Werner
and
P. J.
Knowles
,
Theor. Chim. Acta
78
,
175
(
1990
).
26.
For a discussion of the treatment of core electrons in correlated calculations, see, e.g.,
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
27.
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Phys. Chem.
96
,
10768
(
1992
);
S.
Koseki
,
M. S.
Gordon
,
M. W.
Schmidt
, and
N.
Matsunaga
,
J. Phys. Chem.
99
,
12764
(
1995
).
28.
M. W.
Schmidt
et al.,
J. Comput. Chem.
14
,
1347
(
1993
).
The version for PC was compiled by A. A. Granovsky, Moscow State University.
29.
W. J.
Stevens
,
M.
Krauss
,
H.
Basch
, and
P. G.
Jasien
,
Can. J. Chem.
70
,
612
(
1992
).
30.
Because there is only a shallow minimum, one might question the appropriateness of these FOCl wave functions with fairly small basis sets for calculating the spin–orbit coupling constants. Actually, the qualitative nature of the wave function (e.g., positive Mulliken charge on Xe) is well reproduced even at this moderate level of theory, and the relative energies of the different states should also be acceptably well described. Some test calculations were performed, with the aim of probing the sensitivity of the spin–orbit coupling constants and of the SO corrections to the ground state energy to the level of theory. Thus, the basis set was changed, the CAS space was enlarged, the level of CI treatment was changed from only single excitations to no excitations (CAS wave functions only) or to single and double excitations (SOCI wave functions). All of these tests showed only small differences from the present results, which suggests that the FOCI wave functions used here are appropriate, at least within the approximate one-electron operator formalism applied.
31.
MOLCAS version 3: K. Andersson, M. R. A. Blomberg, M. P. Fülscher, V. Kellö, R. Lindh, P.-Å. Malmqvist, J. Noga, J. Olsen, B. O. Roos, A. J. Sadlej, P. E. M. Siegbahn, M. Urban, and P. O. Widmark, University of Lund, Sweden, 1994.
32.
NBO Version 3.1: E. D. Glendeningn, A. E. Reed, J. E. Carpenter, and F. Weinhold.
33.
GAUSSIAN 94, Revision E.l, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
34.
J.
Holmes
,
Mass Spectrom. Rev.
8
,
513
(
1989
).
35.
T. T.
Yang
,
J. A.
Blauer
,
C. E.
Turner
, Jr.
, and
G. A.
Merry
,
Appl. Opt.
26
,
2533
(
1987
);
D. H.
Burde
,
T. T.
Yang
,
D. G.
Harris
,
L. A.
Pugh
,
J. H.
Tillotson
,
C. E.
Turner
, Jr.
, and
G. A.
Merry
,
Appl. Opt.
26
,
2539
(
1987
).
36.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
(
1988
).
37.
D.
Schröder
,
N.
Goldberg
,
W.
Zummack
,
H.
Schwarz
,
J. C.
Poutsma
, and
R. R.
Squires
,
Int. J. Mass Spectrom. Ion Processes
165/166
,
71
(
1997
);
G.
Hornung
,
C. A
Schalley
,
M.
Dieterle
,
D.
Schröder
, and
H.
Schwarz
,
Chem. Eur. J.
3
,
1866
(
1997
);
C. A.
Schalley
,
G.
Hornung
,
D.
Schröder
, and
H.
Schwarz
,
Int. J. Mass Spectrom. Ion Processes
172/173
,
181
(
1998
);
C. A.
Schalley
,
G.
Hornung
,
D.
Schröder
, and
H.
Schwarz
,
Chem. Soc. Rev.
27
,
91
(
1998
).
38.
P. J.
MacDougall
,
G. J.
Schrobilgen
, and
R. F. W.
Bader
,
Inorg. Chem.
28
,
763
(
1989
).
39.
This interpretation is supported by the observation of a non-negligible (∼0.06) norm of the τ1 excitation vector in the coupled-cluster expansion around the minimum. We note that for all the other species studied here, the τ1 vector was always of negligible magnitude (0.02 or smaller).
40.
J.
Tellinghuisen
,
A. K.
Hays
, and
G. C.
Tilsone
,
J. Chem. Phys.
65
,
4473
(
1976
).
41.
See also:
V.
Aquilanti
,
D.
Cappelletti
, and
F.
Pirani
,
Chem. Phys. Lett.
271
,
216
(
1997
).
42.
For neutral NeH as a similar example, see
S. F.
Selgren
,
D. E.
Hipp
, and
G. I.
Gellene
,
J. Chem. Phys.
88
,
3116
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.