Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity ε. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter Γ that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results.

1.
G. S.
Manning
,
Q. Rev. Biophys.
11
,
179
(
1978
).
2.
M. Mandel, Encyclopedia of Polymer Science and Engineering (Wiley, New York, 1987).
3.
K. S. Schmitz, Macro-Ion Characterization: From Dilute Solutions to Complex Fluids (ACS, Washington, DC, 1994).
4.
Z. Alexandrowicz and A. Katchalsky, J. Polym. Sci., Part A, General Papers 1, 3231 (1963).
5.
A.
Katchalsky
,
Pure Appl. Chem.
26
,
327
(
1971
).
6.
G. S.
Manning
,
J. Chem. Phys.
51
,
924
,
934
(
1969
).
7.
G. S.
Manning
,
Biophys. Chem.
7
,
95
(
1977
);
G. S.
Manning
,
Biophys. Chem.
9
,
65
(
1978
).
8.
D.
Stigter
,
J. Colloid Interface Sci.
53
,
296
(
1975
).
9.
M.
Fixman
,
J. Chem. Phys.
70
,
4995
(
1979
).
10.
C. W.
Outhwaite
,
M.
Molero
, and
L. B.
Bhuiyan
,
J. Chem. Soc. Faraday Trans.
87
,
3227
(
1991
).
11.
T.
Das
,
D.
Bratko
,
L. B.
Bhuiyan
, and
C. W.
Outhwaite
,
J. Phys. Chem.
99
,
410
(
1995
).
12.
R.
Bacquet
and
P. J.
Rossky
,
J. Phys. Chem.
88
,
2660
(
1984
).
13.
V.
Vlachy
and
D. A.
McQuarrie
,
J. Chem. Phys.
83
,
1927
(
1985
).
14.
D.
Bratko
and
V.
Vlachy
,
Chem. Phys. Lett.
90
,
434
(
1982
).
15.
V.
Vlachy
and
D.
Dolar
,
J. Chem. Phys.
76
,
2010
(
1982
).
16.
I.
Noda
,
T.
Tsuge
, and
M.
Nagasawa
,
J. Phys. Chem.
74
,
710
(
1970
).
17.
Yu. V.
Kalyuzhnyi
and
G.
Stell
,
Chem. Phys. Lett.
240
,
157
(
1995
).
18.
L.
Blum
,
Yu. V.
Kalyuzhnyi
,
O.
Bernard
, and
J. N.
Herrera-Pacheco
,
J. Phys.: Condens. Matter
8
,
A143
(
1996
).
19.
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
51
,
253
(
1984
);
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
55
,
33
(
1985
).
20.
G.
Stell
and
Y.
Zhou
,
J. Chem. Phys.
91
,
3618
(
1989
);
Y.
Zhou
and
G.
Stell
,
J. Chem. Phys.
96
,
1504
,
1507
(
1992
).
21.
Y.
Hu
,
H. L.
Liu
, and
J. M.
Prausnitz
,
J. Chem. Phys.
104
,
396
(
1996
).
22.
L.
Blum
,
Mol. Phys.
30
,
1529
(
1975
).
23.
L.
Blum
and
J. S.
Hoye
,
J. Phys. Chem.
81
,
1311
(
1977
).
24.
L. Blum, Theoretical Chemistry: Advances and Perspectives, edited by D. Henderson (Academic, New York, 1980), Vol. 5.
25.
M. J.
Stevens
and
K.
Kremer
,
J. Chem. Phys.
103
,
1669
(
1995
).
26.
L.
Wang
and
V. A.
Bloomfield
,
Macromolecules
23
,
804
(
1990
).
27.
Th.
Odijk
,
Macromolecules
12
,
688
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.