We analyze the spatiotemporal behavior in a lattice-gas model for the monomer-dimer reaction on surfaces. This model, which mimics catalytic CO-oxidation, includes a mobile monomer adspecies (representing CO), an immobile dissociatively adsorbed dimer species (representing O), and a finite reaction rate (for CO2 production). We characterize in detail the propagation of the chemical wave or reaction front produced when the stable reactive steady-state of the model displaces the metastable CO-poisoned state. In the regime of high CO-mobility, such propagation can be described directly within a “hydrodynamic” reaction-diffusion equation formalism. However, we show that the chemical diffusivity of CO is dependent on the O coverage, reflecting the percolative nature of CO-transport through a background of immobile O. We also emphasize that gradients in the coverage of immobile O induce a diffusive flux in the highly mobile CO. These features significantly influence wave propagation and reaction front structure. In addition, our analysis accounts for the feature that in this hydrodynamic regime, correlations persist in the distribution of adsorbed immobile O, and that these influence the reaction kinetics, the steady states, and the percolation and diffusion properties. To this end, we utilize a “hybrid” approach which incorporates a mean-field reaction-diffusion treatment of adsorbed CO, coupled with a lattice-gas treatment of adsorbed O [Tammaro et al., J. Chem. Phys. 103, 10277 (1995)].

1.
R.
Imbihl
and
G.
Ertl
,
Chem. Rev.
95
,
697
(
1995
).
2.
V. P.
Zhadanov
and
B.
Kasemo
,
Surf. Sci. Rep.
20
,
111
(
1994
);
J. W. Evans and M. Sabella, Trends Stat. Phys. 1, 107 (1994);
J. W. Evans, Langmuir 7, 2514 (1991).
3.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
50
,
2553
(
1986
).
4.
M.
Dumont
,
P.
Dufour
,
B.
Sente
, and
R.
Dagonnier
,
J. Catal.
122
,
95
(
1990
).
5.
J. W.
Evans
and
M. S.
Miesch
,
Phys. Rev. Lett.
66
,
833
(
1991
).
6.
J. W.
Evans
and
T. R.
Ray
,
Phys. Rev. E
50
,
4302
(
1994
).
7.
E. G.
Seebauer
and
C. E.
Allen
,
Prog. Surf. Sci.
49
,
265
(
1995
).
8.
M.
Tammaro
,
M.
Sabella
, and
J. W.
Evans
,
J. Chem. Phys.
103
,
10277
(
1995
).
9.
D. S.
Sholl
, and
R. T.
Skodje
,
Surf. Sci.
334
,
295
(
1995
).
10.
R. H.
Goodman
,
D. S.
Graff
,
L. M.
Sander
,
P.
Leroux-Hugon
, and
E.
Clement
,
Phys. Rev. E
52
,
5904
(
1995
).
11.
J. W.
Evans
,
J. Chem. Phys.
98
,
2463
(
1993
).
12.
R. M.
Ziff
and
B. J.
Brosilow
,
Phys. Rev. A
46
,
4630
(
1992
).
13.
Note that h in Ref. 8, and Γ in Ref. 9, denote the total hop rate for CO(ads), rather than the hop rate per direction (as used here). Results in this paper are not quantitatively consistent with those in Ref. 9 for p* vs Γ.
14.
V also decreases linearly with Δ in the monomer–dimer model with infinite k (see Refs. 6, 10). However a nonlinear decrease applies approaching a continuous poisoning transition (Ref. 6).
15.
D. Mollison, J. R. Stat. Soc. B 39, 283 (1977).
16.
J.
Kertesz
and
D. E.
Wolf
,
J. Phys. A
21
,
747
(
1988
).
17.
J. Krug and H. Spohn, in Solids Far From Equilibrium, edited by C. Godreche (Cambridge University Press, Cambridge, 1991).
18.
A. S. Mikhailov, Introduction to Synergetics I (Springer, Berlin, 1990).
19.
R.
Gomer
,
Rep. Prog. Phys.
53
,
917
(
1990
).
20.
P.
Fischer
and
U. M.
Titulaer
,
Surf. Sci.
221
,
409
(
1989
).
21.
D. S.
Sholl
and
R. T.
Skodje
,
Surf. Sci.
334
,
305
(
1995
).
22.
R.
Kutner
,
Phys. Lett. A
81
,
239
(
1981
).
23.
The classic analysis of Kutner (Ref. 22) for a noninteracting lattice-gas on a perfect lattice can be readily extended to the case of a (static) disordered lattice. See
R.
Kutner
and
K. W.
Kehr
,
Philos. Mag. A
48
,
199
(
1983
);
C. H.
Mak
,
H. C.
Andersen
, and
S. M.
George
,
J. Chem. Phys.
88
,
4052
(
1988
).
24.
D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992);
Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1991).
25.
J. W.
Evans
,
Rev. Mod. Phys.
65
,
1281
(
1993
).
26.
Th. M.
Nieuwenhuizen
,
P. J. F.
van Veltoven
, and
M. H.
Ernst
,
Phys. Rev. Lett.
57
,
2477
(
1986
);
Th. M.
Nieuwenhuizen
,
P. J. F.
van Veltoven
, and
M. H.
Ernst
,
J. Phys. A
20
,
4001
(
1987
).
27.
M.
Silverberg
and
A.
Ben-Shaul
,
J. Chem. Phys.
87
,
3178
(
1989
);
K. A.
Fichthorn
and
W. H.
Weinberg
,
Langmuir
7
,
2539
(
1991
).
28.
Equation (9) shows that the slope discontinuity, [d/dξθCO(0+)−d/dξθCO(0−)] must be matched by the ξ=0+ value of −V−1d/dξ[DCO,COd/dξθCO+DCO,Od/dξθO], which is proportional to Fperc(pc). The exact value of Fperc(pc) is zero since the critical exponent μ>1, but its value is nonzero it does occur using a quadratic approximation.
29.
H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, in Topics in Current Physics, edited by T. W. Burkhardt and J.M. J. van Leeuwen (Springer, Berlin, 1982), Vol. 30;
P. J.
Reynolds
,
H. E.
Stanley
, and
W.
Klein
,
Phys. Rev. B
21
,
1223
(
1980
).
30.
D. E.
Sanders
and
J. W.
Evans
,
Phys. Rev. A
38
,
4186
(
1988
).
31.
B. J.
Brosilow
and
R. M.
Ziff
,
Phys. Rev. A
46
,
4534
(
1992
);
T.
Tome
, and
R.
Dickman
,
Phys. Rev. A
47
,
948
(
1993
);
J. W. Evans and M. Sabella, in Ref. 2.
32.
M. Tammaro and J. W. Evans, Surf. Sci. Lett. (to be published).
33.
A.
Hopkins
,
J. M.
Bradley
,
X.-C.
Guo
, and
D. A.
King
,
Phys. Rev. Lett.
71
,
1597
(
1993
).
34.
M.
Bar
,
Ch.
Zulicke
,
M.
Eiswirth
, and
G.
Ertl
,
J. Chem. Phys.
96
,
8595
(
1992
).
35.
W.
Swiech
,
C. S.
Rastomjee
,
R.
Imbihl
,
J. W.
Evans
,
B.
Rausenberger
,
W.
Engel
,
A. K.
Schmid
,
A. M.
Bradshaw
, and
E.
Zeitler
,
Surf. Sci.
307/309
,
138
(
1994
).
36.
M. Tammaro and J. W. Evans, Phys. Rev. E (submitted).
37.
H. P.
Kaukonen
and
R. M.
Nieminen
,
J. Chem. Phys.
91
,
4380
(
1989
);
M.
Ehsasi
,
M.
Matloch
,
J. H.
Block
,
K.
Christmann
,
F. S.
Rys
, and
W.
Hirschwald
,
J. Chem. Phys.
91
,
4949
(
1989
).
38.
J.-F. Gouyet, M. Rosso, and B. Sapoval, in Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1981).
39.
R. M.
Ziff
,
Phys. Rev. Lett.
69
,
2670
(
1992
);
R. M.
Ziff
,
Phys. Rev. Lett.
72
,
1942
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.