Starting from an analysis of the low-density and large gradient regions which dominate van der Waals interactions, we propose a modification of the exchange functional introduced by Perdew and Wang, which significantly enlarges its field of applications. This is obtained without increasing the number of adjustable parameters and retaining all the asymptotic and scaling properties of the original model. Coupling the new exchange functional to the correlation functional also proposed by Perdew and Wang leads to the mPWPW model, which represents the most accurate generalized gradient approximation available until now. We next introduce an adiabatic connection method in which the ratio between exact and density functional exchange is determined a priori from purely theoretical considerations and no further parameters are present. The resulting mPW1PW model allows to obtain remarkable results both for covalent and noncovalent interactions in a quite satisfactory theoretical framework encompassing the free electron gas limit and most of the known scaling conditions. The new functionals have been coded with their derivatives in the Gaussian series of programs, thus allowing fully self-consistent computations of energy and properties together with analytical evaluation of first and second geometry derivatives.

1.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
2.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
272
,
242
(
1997
).
3.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
4.
A. D.
Becke
,
J. Chem. Phys.
84
,
4524
(
1986
).
5.
R.
Neumann
,
R. H.
Nobes
, and
N. C.
Handy
,
Mol. Phys.
87
,
1
(
1996
).
6.
A. D.
Becke
,
J. Chem. Phys.
85
,
7184
(
1986
).
7.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
8.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
9.
J. P. Perdew, in Proceedings of the 21st Annual International Symposium on the Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin 1991).
10.
D. J.
Lacks
and
R. G.
Gordon
,
Phys. Rev. A
47
,
4681
(
1993
).
11.
G. J.
Laming
,
V.
Termath
, and
N. C.
Handy
,
J. Chem. Phys.
99
,
8765
(
1993
).
12.
P. M. W.
Gill
and
J. A.
Pople
,
Phys. Rev. A
47
,
2383
(
1993
).
13.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
14.
P. M. W.
Gill
,
Mol. Phys.
89
,
433
(
1996
).
15.
(a)
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
(b)
D. C.
Patton
,
D. V.
Porezag
, and
M. R.
Pederson
,
Phys. Rev. B
55
,
7454
(
1997
);
(c) D. C. Patton and M. R. Pederson, Phys. Rev. A (in press).
16.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
17.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. B
48
,
11638
(
1993
).
18.
E. H.
Lieb
and
S.
Oxford
,
Int. J. Quantum Chem.
19
,
427
(
1981
).
19.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
8765
(
1993
).
20.
C. Adamo and V. Barone, in Recent Advances in Density Functional Methods (part II), edited by D. P. Chong (World Scientific, Singapore 1997).
21.
J. P.
Perdew
,
J. A.
Cevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
22.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
23.
G. J.
Laming
,
V.
Termath
, and
N. C.
Handy
,
J. Chem. Phys.
99
,
8765
(
1993
).
24.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
97
,
7846
(
1992
).
25.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
26.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
27.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
28.
J.
Baker
,
J.
Andzelm
,
M.
Muir
, and
P. R.
Taylor
,
Chem. Phys. Lett.
237
,
53
(
1995
).
29.
C. W.
Bauschlicher
,
Chem. Phys. Lett.
246
,
50
(
1995
).
30.
V.
Barone
,
J. Chem. Phys.
101
,
6834
(
1994
).
31.
V. Barone, in Recent Advances in Density Functional Methods (part 1), edited by D. P. Chong (World Scientific, Singapore, 1995), p. 278.
32.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
33.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
34.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
35.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
36.
V.
Barone
,
L.
Orlandini
, and
C.
Adamo
,
Chem. Phys. Lett.
231
,
295
(
1994
).
37.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Am. Chem. Soc.
117
,
1141
(
1995
).
38.
J. M.
Pérez-Jordà
and
A. D.
Becke
,
Chem. Phys. Lett.
233
,
134
(
1995
).
39.
M. N.
Glukhovtsev
,
R. D.
Bach
,
A.
Pross
, and
L.
Radom
,
Chem. Phys. Lett.
260
,
558
(
1996
).
40.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, M. C. Strain, J. C. Burant, R. E. Stratmann, K. N. Kudin, G. A. Petersson, J. A. Montgomery, V. G. Zakrzewski, K. Raghavachari, P. Y. Ayala, Q. Cui, K. Morokuma, J. V. Ortiz, J. B. Foresman, B. Cioslowski, V. Barone, B. Stefanov, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, T. A. Keith, M. A. Al-Laham, A. Nanayakkara, M. Challacombe, C. Y. Peng, J. P. Stewart, C. Gonzalez, M. Head-Gordon, P. W. Gill, B. G. Johnson and J. A. Pople, GAUSSIAN 95 DEVELOPMENT VERSION, Gaussian Inc., Pittsburgh, PA, 1996).
41.
J. A.
Pople
,
P. M. W.
Gill
, and
B. G.
Johnson
,
Chem. Phys. Lett.
199
,
557
(
1992
).
42.
(a)
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
);
(b)
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
43.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
44.
V.
Barone
and
C.
Adamo
,
J. Chem. Phys.
105
,
11007
(
1996
).
45.
A.
Lembarki
,
F.
Rogemond
, and
H.
Chermette
,
Phys. Rev. A
52
,
3704
(
1995
).
46.
F.
Mele
,
T.
Mineva
,
N.
Russo
, and
M.
Toscano
,
Theor. Chim. Acta
91
,
169
(
1995
).
47.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
48.
J. F.
Ogilvie
and
F. Y. H.
Wang
,
J. Mol. Struct.
273
,
277
(
1992
).
49.
C. Adamo and V. Barone (unpublished results).
50.
G.
Chalashinski
and
M. M.
Szczesniak
,
Chem. Rev.
94
,
1723
(
1994
), and references therein.
51.
L. A.
Curtiss
,
D. J.
Frurip
, and
M.
Blander
,
J. Chem. Phys.
71
,
2073
(
1979
).
52.
J. A.
Odutola
and
T. R.
Dyke
,
J. Chem. Phys.
72
,
5062
(
1980
).
53.
M. J.
Frisch
,
J. E.
Del Bene
,
J. S.
Binkley
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
84
,
2279
(
1986
).
54.
F.
Sim
,
A.
St-Amant
,
I.
Papai
, and
D. R.
Salahub
,
J. Am. Chem. Soc.
114
,
4391
(
1992
).
55.
C.
Mijoule
,
Z.
Latajka
, and
D.
Borgis
,
Chem. Phys. Lett.
244
,
432
(
1994
).
56.
E. I. Proynov, A. Vela, E. and D. R. Salahub, Int. J. Quantum Chem. Symp. 29, 61 (1995).
57.
C. Adamo and V. Barone (unpublished).
58.
L.
Fredin
and
B.
Nelander
,
J. Mol. Struct.
16
,
205
(
1973
).
59.
A. E.
Reed
,
F.
Weinhold
,
L. A.
Curtiss
, and
D. J.
Pochatko
,
J. Chem. Phys.
84
,
5687
(
1986
).
60.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Phys. Chem.
100
,
12265
(
1996
).
61.
I.
Roeggen
and
T.
Dahl
,
J. Am. Chem. Soc.
114
,
511
(
1992
).
62.
H. I. Bloemink, K. Hinds, A. C. Legon, and J. C. Thorn, J. Chem. Soc. Chem. Commun. 1321 (1994).
63.
H. I.
Bloemink
,
K.
Hinds
,
A. C.
Legon
, and
J. C.
Thorn
,
Chem. Phys. Lett.
223
,
162
(
1994
).
64.
A. G.
Bowmaker
and
P. D.
Boyd
,
J. Chem. Soc. Faraday Trans.
83
,
2211
(
1987
).
65.
V.
Barone
and
C.
Adamo
,
Int. J. Quantum Chem.
61
,
429
(
1997
).
66.
R. V.
Stanton
, and
K. K.
Merz
J. Chem. Phys.
101
,
6658
(
1994
).
67.
S. S. Shaik, H. B. Schlegel and S. Wolfe, Theoretical aspects of physical organic chemistry. The SN2 mechanism. (Wiley, New York, 1992).
68.
T. N.
Truong
and
E. V.
Stefanovich
,
J. Phys. Chem.
99
,
14700
(
1995
).
69.
M. N.
Glukhovtsev
,
A.
Pross
, and
L.
Radom
,
J. Am. Chem. Soc.
117
,
2024
(
1995
).
70.
J. W.
Larson
and
T. B.
McMahon
,
J. Am. Chem. Soc.
106
,
517
(
1984
).
71.
S. E.
Barlow
,
J. M.
van Doren
, and
V. M.
Bierbaum
,
J. Am. Chem. Soc.
116
,
10645
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.