The filling processes of water and cyclohexane in porous silica (with a characteristic pore size of 60 Å) are investigated using the nuclear magnetic resonance (NMR) technique of cryoporometry. In this technique, the liquid was frozen in the pores before the temperature was raised gradually; melting the smallest particles first and then particles of increased size. The volume of the molten liquid present was measured using the height of a T2 spin echo. The experiments were performed with filling fractions ranging from 10% to 100%. The results showed distinctly different behaviors of the fluids, which depended on the surface adhesion. It was found that water (a fluid which wets the pore surface) forms small puddles—much smaller than the smallest pore size—at low filling fractions. These puddles grow in size as more water is added until all the pore volume is filled. Cyclohexane (a non-wetting fluid) on the other hand, does not form small puddles but completely fills the pores with a preference for the smaller pores. Water is found to give more accurate results for the pore size distribution than cyclohexane, in 60 Å silica.

1.
W. P. Halperin, F. D’Orazio, S. Bhattacharja, and C. J. Tarczon, in Molecular Dynamics in Restricted Geometries, edited by J. Klafter and J. M. Drake (Wiley, New York, 1989), p. 311.
2.
T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic, London, 1971).
3.
R. L. Kleinberg, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 1996), p. 4960.
4.
Z.
Taicher
,
G.
Coates
,
Y.
Gitartz
, and
L.
Berman
,
Magn. Reson. Imaging
12
,
285
(
1994
).
5.
M. B.
Carr
,
R.
Ehrlich
,
M. C.
Bowers
, and
J. J.
Howard
,
J. Pet. Sci. Eng.
14
,
115
(
1996
).
6.
W. P.
Halperin
,
J-.Y.
Jehng
, and
Y-.Q.
Song
,
Magn. Reson. Imaging
12
,
169
(
1994
).
7.
B. P.
Hills
and
J. E. M.
Snaar
,
Mol. Phys.
84
,
141
(
1995
);
B. P.
Hills
,
P. S.
Belton
, and
V. M.
Quantin
,
Mol. Phys.
78
,
893
(
1993
).
8.
S. G.
Allen
,
P. C. L.
Stephenson
, and
J. H.
Strange
,
J. Chem. Phys.
106
,
7802
(
1997
).
9.
J. E. M.
Snaar
and
B. P.
Hills
,
Mol. Phys.
86
,
1137
(
1995
);
B. P.
Hills
and
V. M.
Quantin
,
Mol. Phys.
79
,
77
(
1993
).
10.
S.
Bobroff
,
G.
Guillot
,
C.
Rivière
,
L.
Cuiec
,
J. C.
Roussel
, and
G.
Kassab
,
J. Chim. Phys.
92
,
1885
(
1995
).
11.
J. H.
Strange
,
M.
Rahman
, and
E. G.
Smith
,
Phys. Rev. Lett.
71
,
3589
(
1993
).
12.
C. L.
Jackson
and
G. B.
McKenna
,
J. Chem. Phys.
93
,
9002
(
1990
).
13.
J. H.
Strange
and
J. B. W.
Webber
,
Meas. Sci. Technol.
8
,
555
(
1997
).
14.
R.
Schmidt
,
E. W.
Hansen
,
M.
Stöcker
,
D.
Akporiaye
, and
O. H.
Ellestad
,
J. Am. Chem. Soc.
117
,
4049
(
1995
).
15.
E. W.
Hansen
,
M.
Stöcker
, and
R.
Schmidt
,
J. Phys. Chem.
100
,
2195
(
1996
).
16.
E. W.
Hansen
,
R.
Schmidt
, and
M.
Stöcker
,
J. Phys. Chem.
100
,
11396
(
1996
).
17.
J. H. Strange and S. M. Alnaimi, in Magnetic Resonance and Related Phenomena (Ampere), edited by K. M. Salikhov (Zavoisky P.T. Institute, Kazan, 1994), p. 129.
18.
S.
Stapf
and
R.
Kimmich
,
J. Chem. Phys.
103
,
2247
(
1995
).
19.
P. R.
Couchman
and
W. A.
Jesser
,
Nature (London)
269
,
481
(
1977
).
20.
R.
Wu
and
V. M.
Malhotra
,
Phys. Rev. B
44
,
4296
(
1991
).
21.
K.
Ishikiriyama
,
M.
Todoki
, and
K.
Motomura
,
J. Colloid Interface Sci.
171
,
92
(
1995
).
22.
H. F.
Booth
and
J. H.
Strange
,
Mol. Phys.
93
,
263
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.