We use classical and quantum mechanical methods to calculate the site-to-site hopping rate of hydrogen impurities in crystalline silicon over a wide range of temperatures. The calculations employ a parameterized version of a potential surface calculated via density functional methods, expanded through quadratic terms about a Cartesian reaction path with a flexible reference. The hopping rate is obtained from the time integral of a flux correlation function which is evaluated using classical molecular dynamics and real-time path integral techniques. The latter are based on the quasiadiabatic propagator discretization and utilize a combination of discrete variable representations and Monte Carlo sampling for the evaluation of the resulting multidimensional integrals. Our results indicate that quantum mechanical tunneling plays a significant role in the diffusion process even above room temperature. In addition, the calculated diffusion rate exhibits a reverse isotope effect in the domain between activated and tunneling dynamics which arises from the zero point energy of the hydrogen atom in the direction perpendicular to the line connecting two stable minima.

1.
A. Van Wieringen and N. Warmoltz, Physica 23, 849 (1956).
2.
S. J. Pearton, W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 1992).
3.
T.
Ichimiya
and
A.
Furuichi
,
Int. J. Appl. Radiat. Insot.
19
,
573
(
1956
).
4.
A.
Fogro-Compero
,
R. P.
Love
, and
R.
Schubert
,
J. Electrochem. Soc.
132
,
2006
(
1985
).
5.
A. J.
Tavendale
,
A. A.
Williams
,
D.
Alexiev
, and
S. J.
Pearton
,
Mater. Res. Soc. Symp. Proc.
104
,
285
(
1988
).
6.
S. J.
Pearton
,
J. Electron. Mater.
14a
,
737
(
1985
).
7.
N. M.
Johnson
,
D. K.
Biegelsen
, and
M. D.
Moyer
,
Appl. Phys. Lett.
40
,
882
(
1982
).
8.
F.
Buda
,
G. L.
Chiarotti
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. Lett.
63
,
294
(
1989
).
9.
G.
Panzarini
and
L.
Colombo
,
Phys. Rev. Lett.
73
,
1636
(
1994
).
10.
C.
Langpape
,
S.
Fabian
,
C.
Klatt
, and
S.
Kalbitzer
,
Appl. Phys. A: Solids Surf.
64
,
207
(
1997
).
11.
P.
Deak
,
L. C.
Snyder
,
J. L.
Lindstrom
,
J. W.
Corbett
,
S. J.
Pearton
, and
A. J.
Tavendale
,
Phys. Lett. A
126
,
427
(
1988
).
12.
C. G.
Van de Walle
,
P. J. H.
Denteneer
,
Y.
Bar-Yam
, and
S. T.
Pantelides
,
Phys. Rev. B
39
,
10791
(
1989
).
13.
Y. V.
Gorenlkinskii
and
N. N.
Nevinnyi
,
Sov. Tech. Phys. Lett.
13
,
45
(
1987
).
14.
A. A.
Bonapasta
,
A.
Lapiccirella
,
N.
Tomassini
, and
M.
Capizzi
,
Europhys. Lett.
7
,
145
(
1988
).
15.
C. H. Seager and R. A. Anderson, Am. Inst. of Phys. 53, 1181 (1988).
16.
D. E.
Boucher
and
G. G.
DeLeo
,
Phys. Rev. B
50
,
5247
(
1994
).
17.
R.
Ramirez
and
C. P.
Herrero
,
Phys. Rev. Lett.
73
,
126
(
1994
).
18.
C. P.
Herrero
and
R.
Ramirez
,
Phys. Rev. B
51
,
16761
(
1995
).
19.
C. P.
Herrero
and
R.
Ramirez
,
Solid State Commun.
97
,
319
(
1996
).
20.
C.
Herrero
,
Phys. Rev. B
55
,
9235
(
1997
).
21.
B. A.
Ruf
and
W. H.
Miller
,
J. Chem. Soc. Faraday Trans. 2
84
,
1523
(
1988
).
22.
N.
Makri
,
Chem. Phys. Lett.
193
,
435
(
1992
).
23.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
).
24.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
448
(
1993
).
25.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 1st ed. (Cambridge University Press, Cambridge, 1989).
26.
G.
Ilk
and
N.
Makri
,
J. Chem. Phys.
101
,
6708
(
1994
).
27.
R. A.
Marcus
,
J. Chem. Phys.
46
,
959
(
1967
).
28.
D. G.
Truhlar
and
A.
Kuppermann
,
J. Chem. Phys.
56
,
2232
(
1972
).
29.
R. A.
Marcus
and
M. E.
Coltrin
,
J. Chem. Phys.
67
,
2609
(
1977
).
30.
S. W.
Rick
,
D. L.
Lynch
, and
J. D.
Doll
,
J. Chem. Phys.
99
,
8183
(
1993
).
31.
K. J. Laidler, Theories of Chemical Reaction Rates (McGraw-Hill, New York, 1969).
32.
L.
Onsager
,
Phys. Rev.
38
,
2265
(
1931
).
33.
B. J. Berne, in Activated Barrier Crossing: Application in Physics, Chemistry and Biology, edited by G. R. Fleming and P. Hanggi (World Scientific, Singapore, 1993), pp. 82–119.
34.
Z.
Zhang
,
K.
Haug
, and
H.
Metiu
,
J. Chem. Phys.
93
,
3614
(
1990
).
35.
T.
Yamamoto
,
J. Chem. Phys.
33
,
281
(
1960
).
36.
W. H.
Miller
,
J. Chem. Phys.
61
,
1823
(
1974
).
37.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
38.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
39.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
40.
N.
Makri
,
Comput. Phys. Commun.
63
,
389
(
1991
).
41.
Z.
Bacic
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
42.
H. A.
Kramers
,
Physica (Utrecht)
7
,
284
(
1940
).
43.
S. W.
Rick
,
D. L.
Lynch
, and
J. D.
Doll
,
J. Chem. Phys.
99
,
8183
(
1993
).
44.
M.
Stavola
and
Y. M.
Cheng
,
Solid State Commun.
93
,
431
(
1995
).
45.
Y. M.
Cheng
and
M.
Stavola
,
Phys. Rev. Lett.
73
,
3419
(
1994
).
46.
J. W.
Lyding
,
K.
Hess
, and
I. C.
Kizilyalli
,
Appl. Phys. Lett.
69
,
2441
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.