Monte Carlo simulations of quantum statistical mechanical properties using the Feynman path integral method were carried out over a temperature range from 50 to 400 K to study the energetics of the water dimer (H2O)2. These results were then used to understand the relation between estimates of the enthalpy of formation obtained from recent ab initio electronic structure calculations and estimates of the enthalpy of formation deduced from experimental measurements of thermal conductivity, second virial coefficients and submillimeter spectroscopy. The full quantum mechanical and anharmonic theoretical results were compared to results obtained from classical mechanical simulation and those obtained from a quantum mechanical harmonic analysis. In performing the analysis for temperatures above 200 K, the definition of a water dimer becomes poorly defined as thermal activation leading to dissociation becomes more probable. The calculated enthalpy of the dimer is strongly dependent on the manner in which trapped and independent monomer species are defined. To address these issues we employ an energy threshold as a dividing surface to separate trapped dimers from those that eventually dissociate on the time scale of an experiment. Approximate quantum mechanical expressions that are consistent with an energy definition of the water dimer were introduced and used in the simulation. It is found that experimental observations are consistent with theoretical calculations once a characteristic time scale for the experimental technique is identified.

1.
G. W. Robinson, S.-B. Zhu, S. Singh and M. W. Evans, Water in Biology, Chemistry and Physics: Experimental Overviews and Computational Methodologies, World Scientific Series in Contemporary Chemical Physics, Vol. 9 (World Scientific, New Jersey, 1996).
2.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
8774
(
1993
).
3.
S. S.
Xantheas
,
J. Chem. Phys.
104
,
8821
(
1996
).
4.
M. W.
Feyereisen
,
D.
Feller
, and
D. A.
Dixon
,
J. Phys. Chem.
100
,
2993
(
1996
).
5.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
6.
S.
Scheiner
,
Annu. Rev. Phys. Chem.
45
,
23
(
1994
).
7.
J. E.
Del Bene
,
H. D.
Mettee
,
M. J.
Frisch
,
B. T.
Luke
, and
J. A.
Pople
,
J. Phys. Chem.
87
,
3279
(
1983
).
8.
L. A.
Curtiss
,
D. J.
Frurip
, and
M.
Blander
,
J. Chem. Phys.
71
,
2703
(
1979
).
9.
K. S.
Kim
,
B. J.
Mhin
,
U.-S.
Choi
, and
K.
Lee
,
J. Chem. Phys.
97
,
6649
(
1992
).
10.
H.
Gai
,
L. X.
Dang
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Phys. Chem.
99
,
13303
(
1995
).
11.
H.
Gai
,
G. K.
Schenter
,
L. X.
Dang
, and
B. C.
Garrett
,
J. Chem. Phys.
105
,
8835
(
1995
).
12.
T. R.
Dyke
,
K. M.
Mack
, and
J. S.
Muenter
,
J. Chem. Phys.
66
,
498
(
1977
).
13.
J. A.
Odutola
and
T. R.
Dyke
,
J. Chem. Phys.
72
,
5062
(
1980
).
14.
L.
Fredin
,
B.
Nelander
, and
G.
Ribbegard
,
J. Chem. Phys.
66
,
4065
(
1977
).
15.
B.
Nelander
,
J. Chem. Phys.
69
,
3870
(
1978
).
16.
R. M.
Bentwood
,
A. J.
Barnes
, and
W. J.
Orville-Thomas
,
J. Mol. Spectrosc.
84
,
391
(
1980
).
17.
R. H.
Page
,
J. G.
Frey
,
Y. R.
Chen
, and
Y. T.
Lee
,
Chem. Phys. Lett.
106
,
373
(
1984
).
18.
D. F.
Coker
,
R. E.
Miller
, and
R. O.
Watts
,
J. Chem. Phys.
82
,
3554
(
1985
).
19.
F. G.
Keyes
,
J. Chem. Phys.
15
,
602
(
1947
).
20.
G. S.
Kell
,
G. E.
McLaurin
, and
E.
Whalley
,
J. Chem. Phys.
48
,
3805
(
1968
).
21.
M. P. Vukalovich, M. S. Trakhtengerts, and G. A. Spiridonov, Teploenergetika 14, 65 (1967) as quoted in J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases (Clarendon, Oxford, 1969). (Ref. 33 of Curtiss et al.)
22.
H. A.
Gebbie
,
W. J.
Burroughs
,
J.
Chamberlain
,
J. E.
Harries
, and
R. G.
Jones
,
Nature (London)
221
,
143
(
1969
).
23.
G. V.
Bondarenko
and
Y. E.
Gorbaty
,
Mol. Phys.
74
,
639
(
1991
).
24.
P.
Kebarle
,
Annu. Rev. Phys. Chem.
28
,
445
(
1977
).
25.
A. W.
Castleman
and
R. G.
Keese
,
Chem. Rev.
86
,
589
(
1986
).
26.
G.
Markovich
,
S.
Pollack
,
R.
Giniger
, and
O.
Cheshnovsky
,
J. Chem. Phys.
101
,
9344
(
1994
).
27.
H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1980).
28.
L. X.
Dang
,
J. Chem. Phys.
97
,
2659
(
1992
).
29.
L. X.
Dang
and
B. C.
Garrett
,
J. Chem. Phys.
99
,
2972
(
1993
).
30.
L. X.
Dang
and
D. E.
Smith
,
J. Chem. Phys.
99
,
6950
(
1993
).
31.
W. L.
Jorgensen
,
J.
Shandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
32.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
33.
J. K.
Gregory
and
D. C.
Clary
,
Chem. Phys. Lett.
228
,
547
(
1994
).
34.
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
35.
L.
Schulman
,
Phys. Rev.
176
,
1558
(
1968
).
36.
M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions, AMS 55 (National Bureau of Standards, U.S. Department of Commerce, Washington, D.C., 1964).
37.
G. K.
Schenter
,
M.
Messina
, and
B. C.
Garrett
,
J. Chem. Phys.
99
,
1674
(
1993
).
38.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
39.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6157
(
1994
).
40.
H.
Johnston
and
J.
Birks
,
Acc. Chem. Res.
5
,
327
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.