The role of solvent–particle and particle–particle interactions on the swelling of colloidal systems has been investigated. A density functional theory (DFT) approach is taken here to describe a colloid–solvent mixture and develop phase diagrams that give a qualitative picture of possible transitions as a function of the bulk conditions (density and temperature) and the degree of surface solvophobicity. The solvophobicity of the surface is taken as a measure of how much the surface dislikes the solvent, and is determined from the contact angle of the solvent on the surface. The results demonstrate that the nature of the surface (solvophobic or solvophobilic) is a key factor in shaping the phase diagrams. For example, when the surface is solvophilic, the dominant phase is the crystalline, where surfaces are spaced by one solvent layer, while when the surface is solvophobic, the system is most often found in the collapsed state (the surfaces are in contact). The shape of the phase diagrams also depends on the particle–particle interaction. When only the repulsive part of the wall–wall interaction is considered, the collapsed phase is observed less frequently and the diagrams are insensitive to the strength of the purely repulsive interaction. In contrast, the strength of the attractive surface–surface potential plays a crucial role in shaping the phase diagrams.

1.
B. V.
Derjaguin
and
L.
Landau
,
Acta Physicochim. URSS
14
,
633
(
1941
).
2.
E. J. W. Verwey and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
3.
J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, San Diego, 1992).
4.
R. P.
Rand
and
V. A.
Parsegian
,
Biochim. Biophys. Acta
988
,
351
(
1989
).
5.
D. C.
Rau
and
V. A.
Parsegian
,
Biophys. J.
61
,
246
(
1992
).
6.
S.
Leikin
,
D. C.
Rau
, and
V. A.
Parsegian
,
Biophys. J.
64
,
A270
(
1993
).
7.
D. C.
Rau
and
V. A.
Parsegian
,
Science
249
,
1278
(
1990
).
8.
L. F.
Braganza
,
R. J.
Crawford
,
M. V.
Smalley
, and
R. K.
Thomas
,
Clays Clay Miner.
38
,
90
(
1990
).
9.
M. V.
Smalley
,
R. K.
Thomas
,
L. F.
Braganza
, and
T.
Matsuo
,
Clays Clay Miner.
37
,
474
(
1989
).
10.
K. K. Mohan, R. N. Vaidya, M. G. Reed, and H. Scott Fogler, Colloids Surf. 73, 237 (1993).
11.
R. M.
Pashley
and
J. P.
Quirk
,
Colloids Surf.
9
,
1
(
1984
).
12.
Y.
Horikawa
,
R. S.
Murray
, and
J. P.
Quirk
,
Colloids Surf.
32
,
181
(
1988
).
13.
D. C.
Rau
and
V. A.
Parsegian
,
Biophys. J.
61
,
260
(
1992
).
14.
S.
Leikin
,
D. C.
Rau
, and
V. A.
Parsegian
,
Phys. Rev. A
44
,
5272
(
1991
).
15.
E. Ya. Rode and N. A. Krotov, J. Inorg. Chem. USSR 4, 804 (1959).
16.
V. I. Spitsyn and I. D. Kolli, J. Inorg. Chem. USSR 1, 2403 (1956).
17.
L. J. D.
Frink
and
F.
van Swol
,
J. Chem. Phys.
100
,
9106
(
1994
).
18.
R. G.
Horn
and
J. N.
Israelachvili
,
J. Chem. Phys.
75
,
1400
(
1981
).
19.
S. J.
O’Shea
,
M. E.
Welland
, and
T.
Rayment
,
Appl. Phys. Lett.
60
,
2356
(
1992
).
20.
J. J.
Magda
,
M.
Tirrell
, and
H. T.
Davis
,
J. Chem. Phys.
86
,
1888
(
1985
).
21.
J. N.
Israelachvili
and
P. M.
McGuiggan
,
Science
241
,
795
(
1988
).
22.
S. G.
Ash
,
D. H.
Everett
, and
C.
Radke
,
J. Chem. Soc. Faraday Trans. 2
69
,
1256
(
1973
).
23.
R.
Evans
and
U.
Marini Bettolo Marconi
,
J. Chem. Phys.
86
,
7138
(
1987
).
24.
M.
Lupkowski
and
F.
van Swol
,
J. Chem. Phys.
95
,
1995
(
1991
).
25.
P.
Tarazona
,
Phys. Rev. A
31
,
2672
(
1985
).
26.
L. J.
Douglas
,
M.
Lupkowski
,
T. L.
Dodd
, and
F.
van Swol
,
Langmuir
9
,
1445
(
1993
).
27.
L. H.
Dubois
,
B. R.
Zegarski
, and
R. G.
Nuzzo
,
J. Am. Chem. Soc.
112
,
570
(
1990
).
28.
H. A.
Biebuyck
,
C. D.
Bain
, and
G. M.
Whitesides
,
Langmuir
10
,
1825
(
1994
).
29.
P. E.
Laibinis
,
R. G.
Nuzzo
, and
G. M.
Whitesides
,
J. Phys. Chem.
96
,
5097
(
1992
).
30.
C. D.
Bain
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
110
,
3665
(
1988
).
31.
Ya. I.
Rabinovich
and
R.-H.
Yoon
,
Langmuir
10
,
1903
(
1994
).
32.
F.
van Swol
and
J. R.
Henderson
,
Phys. Rev. A
40
,
2567
(
1989
).
33.
F.
van Swol
and
J. R.
Henderson
,
Phys. Rev. A
43
,
2932
(
1991
).
34.
J. R.
Henderson
,
P.
Tarazona
,
F.
van Swol
, and
E.
Velasco
,
J. Chem. Phys.
96
,
4633
(
1992
).
35.
P.
Adams
and
J. R.
Henderson
,
Mol. Phys.
73
,
1383
(
1991
).
36.
J. R.
Henderson
and
F.
van Swol
,
Mol. Phys.
56
,
1313
(
1985
).
37.
P.
Tarazona
,
U.
Marini Bettolo Marconi
, and
R.
Evans
,
Mol. Phys.
60
,
573
(
1987
).
38.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
39.
Note that the triple point and critical temperatures of the cut and shifted LJ fluid are kBTt/ε=0.62 and kBTc/ε=1.11, respectively.
40.
The critical temperature of the cut and shifted LJ fluid is kBTc/ε=1.11. The critical temperature of methanol is 513.15 K (Ref. 41), so ε=6.383×10−21J for the methanol–methanol interaction. For cyclohexane, Tc=554.15 K (Ref. 41), so ε=6.893×10−21J.
41.
R. H. Perry and D. Green, Perry’s Chemical Engineers’ Handbook, 6th ed. (McGraw-Hill, 1984).
42.
K.
Norrish
and
J. P.
Quirk
,
Nature (London)
173
,
255
(
1954
).
43.
J. P.
Quirk
,
Isr. J. Chem.
6
,
213
(
1968
).
44.
A.
Delville
,
J. Phys. Chem.
97
,
9703
(
1993
).
45.
L. J. D. Frink and F. van Swol, J. Chem. Phys. (in press).
46.
R. M.
Pashley
,
J. Colloid Interface Sci.
83
,
531
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.