Based on a fully relaxed molecular-mechanics approach, we present a complete series of atomic force microscopy images of the NaCl(001) surface. For a given atomic structure of a diamond probe-tip [111] oriented, we analyze the results obtained from the two usual imaging modes either based on the monitoring of lateral or vertical forces. By accounting for the atomic relaxation of the whole system for any tip-sample configuration, we were able to get new insights about the achievement of atomic resolution on such substrates. Depending on the tip-sample distance range, the scanning of the NaCl(001) surface results in completely different behaviors associated with these two imaging modes. At very short distance we observed an increase of the apparent corrugation when working with the lateral force mode. The perturbations generated in the images by the presence of localized defects (vacancy and monoatomic step) are also analyzed within this model. These last calculations clearly indicate the fundamental role played by the relaxation phenomena on the observed topography when the tip scans the surface defects.

1.
Scanning Tunneling Microscopy III, edited by R. Wiesendanger and H.-J. Güntherodt, Springer Series in Surface Sciences (Springer, Berlin, 1993).
2.
Forces in Scanning Probe Methods, NATO ASI Series E, edited by H.-J. Güntherodt et al. (Kluwer Academic, Amsterdam, 1995), Vol. 286.
3.
U.
Hartmann
,
Phys. Rev. B
42
,
1541
(
1990
);
U.
Hartmann
,
Phys. Rev. B
43
,
2404
(
1991
).
4.
E. M.
Lifshitz
,
Sov. Phys. JETP
2
,
73
(
1956
).
5.
D.
Rugar
and
P.
Hansma
,
Phys. Today
10
,
23
(
1990
), and references therein.
6.
D.
Sarid
,
T.
Chen
,
S.
Howells
,
M.
Gallagher
,
L.
Yi
,
D. L.
Lichtenberger
,
K. W.
Nebesney
,
C. D.
Ray
,
D. R.
Huffman
, and
L. D.
Lamb
,
Ultramicroscopy
42–44
,
610
(
1992
).
7.
P.
Dietz
,
P. K.
Hansma
,
K.
Fostiropoulos
, and
W.
Krätschmer
,
Appl. Phys. Lett.
60
,
62
(
1992
);
P.
Dietz
,
P. K.
Hansma
,
K.
Fostiropoulos
, and
W.
Krätschmer
,
Appl. Phys. A: Solids Surf.
56
,
207
(
1993
).
8.
Ch.
Girard
,
X.
Bouju
,
O. J. F.
Martin
,
A.
Dereux
,
C.
Chavy
,
H.
Tang
, and
C.
Joachim
,
Phys. Rev. B
48
,
15417
(
1993
).
9.
A.
Dereux
,
Ch.
Girard
,
O. J. F.
Martin
,
Ph.
Lambin
, and
H.
Richter
,
J. Chem. Phys.
101
,
10973
(
1994
).
10.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
11.
F. J.
Giessibl
and
G.
Binnig
,
Ultramicroscopy
42–44
,
281
(
1992
).
12.
L.
Howald
,
H.
Hæfke
,
R.
Lüthi
,
E.
Meyer
,
G.
Ertl
,
H.
Rudin
, and
H.-J.
Güntherodt
,
Phys. Rev. B
49
,
5615
(
1994
).
13.
G.
Meyer
and
N. M.
Amer
,
Appl. Phys. Lett.
56
,
2100
(
1990
).
14.
F.
Ohnesorge
and
G.
Binnig
,
Science
260
,
1451
(
1993
).
15.
M.
Ohta
,
T.
Konishi
,
Y.
Sugawara
,
S.
Morita
,
M.
Suzuki
, and
Y.
Enomoto
,
Jpn. J. Appl. Phys., Part 2
32
,
2980
(
1993
).
16.
Ch.
Girard
,
D.
Van Labeke
, and
J. M.
Vigoureux
,
Phys. Rev. B
40
,
12133
(
1989
).
17.
A. L.
Schluger
,
C.
Pisani
,
C.
Roetti
, and
R.
Orlando
,
J. Vac. Sci. Technol. A
8
,
3967
(
1990
).
18.
A. L.
Schluger
,
A. L.
Rohl
,
R. M.
Wilson
, and
R. T.
Williams
,
J. Vac. Sci. Technol. B
13
,
1155
(
1995
).
19.
A. L.
Schluger
,
R. T.
Williams
, and
A. L.
Rohl
,
Surf. Sci.
343
,
273
(
1995
).
20.
H.
Tang
,
C.
Joachim
,
J.
Devillers
, and
Ch.
Girard
,
Europhys. Lett.
27
,
383
(
1994
).
21.
E.
Meyer
,
H.
Heinzelmann
,
H.
Rudin
, and
H.-J.
Güntherodt
,
Z. Phys. B
79
,
3
(
1990
).
22.
F. J.
Giessibl
,
Phys. Rev. B
45
,
13815
(
1992
).
23.
H.
Tang
,
C.
Joachim
, and
J.
Devillers
,
Surf. Sci.
291
,
439
(
1993
).
24.
H.
Tang
,
C.
Joachim
, and
J.
Devillers
,
J. Vac. Sci. Technol. B
12
,
2179
(
1994
).
25.
M.
Born
,
Z. Phys.
7
,
127
(
1921
).
26.
E.
Madelung
,
Z. Phys.
2
,
494
(
1919
).
27.
R. T.
Sanderson
,
J. Chem. Educ.
44
,
521
(
1967
).
28.
E. J. W.
Verwey
,
Recl. Trav. Chim. Pays-Bas.
65
,
521
(
1946
).
29.
G. C.
Benson
,
P. I.
Freeman
, and
E.
Dempsey
,
J. Chem. Phys.
39
,
302
(
1963
).
30.
Y. W.
Tsang
and
L. M.
Falicov
,
Phys. Rev. B
12
,
2441
(
1975
).
31.
T.
Yanagihara
and
K.
Yomogita
,
Surf. Sci.
219
,
407
(
1989
).
32.
W. R. Busing, Oak Ridge National Laboratory, 1981.
33.
R. B. Nachbar, Jr. and K. Mislow, Quantum Chemistry Program Exchange 514 (1986), Indiana University, Bloomington, IN.
34.
Y.
Kashihara
,
S.
Kimura
, and
J.
Harada
,
Surf. Sci.
214
,
477
(
1989
).
35.
N. F.
Mott
and
M. J.
Littleton
,
Trans. Faraday Soc.
34
,
485
(
1938
).
36.
P. W.
Tasker
,
Philos. Mag. A
39
,
119
(
1979
).
37.
Computer Simulation of Defects in Polar Solids, special issue of J. Chem. Soc. Faraday Trans. 85(5) (1989). Guest editors C. R. A. Catlow and A. M. Stoneham.
38.
R. W.
Grimes
and
C. R. A.
Catlow
,
J. Am. Ceram. Soc.
73
,
3251
(
1990
).
39.
G. J.
German
,
S. R.
Cohen
,
G.
Neubauer
,
G. M.
McClelland
, and
H.
Seki
,
J. Appl. Phys.
73
,
163
(
1993
).
40.
J. A.
Harrison
,
C. T.
White
,
R. J.
Colton
, and
D. W.
Brenner
,
Surf. Sci.
271
,
57
(
1992
).
41.
H.
Tang
,
C.
Joachim
, and
J.
Devillers
,
Europhys. Lett.
30
,
289
(
1995
).
42.
M.
Salmeron
,
A.
Folch
,
G.
Neubauer
,
M.
Tomitori
,
D. F.
Ogletree
, and
K.
Kolbe
,
Langmuir
8
,
2832
(
1992
).
43.
R. T.
Williams
,
R. M.
Wilson
, and
Hanli
Liu
,
Nucl. Instrum. Methods Phys. Res. B
65
,
473
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.