Ab initio self-consistent-field (SCF), two-configuration SCF (TCSCF), and density functional theory (DFT) calculations on the charge–transfer complexes of doubly Li/Cl-doped oligothiophenes and oligo(p-phenyls) and on respective charged systems without counterions have been carried out in order to study polaron to bipolaron transitions. Oligomer chains up to octamers and the ring structures cyclo-dodecathiophene and cyclo-dodeca(p-phenyl) have been investigated. Special attention is paid to the open-shell biradical character of two isolated polaronic defects. It is found that the TCSCF and the spin-unrestricted DFT methods can be successfully applied. A bipolaron structure is obtained when the doping atoms are located on neighboring rings and when there is one undoped ring separating the two doped ones. If there are two or more undoped rings in between a two-polaron configuration (biradical) is found. The bipolaron system is calculated to be more stable than the two-polaron case when counterions are taken into account. The stabilities are reversed if the bare, doubly-charged systems are considered. A theoretical estimate for the barrier height of the polaron to bipolaron transition is given using model reaction coordinates.

1.
J. E. Frommer and R. R. Chance, Encyclopedia of Polymer Science and Engineering (Wiley, New York, 1986).
2.
A. J.
Heeger
,
S.
Kivelson
,
J. R.
Schrieffer
, and
W. P.
Su
,
Rev. Mod. Phys.
60
,
781
(
1988
).
3.
Edited by J.-L. Brédas and R. R. Chance, Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, NATO-ASI Series E182 (Kluwer, Dordrecht, 1990).
4.
Conjugated Polymers-The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, edited by J.-L. Brédas and R. Silbey (Kluwer, Dordrecht, 1991).
5.
M.
Peo
,
S.
Roth
,
K.
Dransfeld
,
B.
Tieke
,
J.
Hocker
,
H.
Gross
,
A.
Grupp
, and
H.
Sixl
,
Solid State Commun.
35
,
119
(
1980
).
6.
J. C.
Scott
,
P.
Pfluger
,
M. T.
Krounbi
, and
G. B.
Street
,
Phys. Rev. B
28
,
2140
(
1983
).
7.
F.
Genoud
,
M.
Guglielmi
,
M.
Nechtschein
,
E.
Genies
, and
M.
Salmon
,
Phys. Rev. Lett.
55
,
118
(
1985
).
8.
K.
Tanaka
,
Y.
Matsuura
,
Y.
Oshima
,
T.
Yamabe
, and
S.
Hotta
,
Synth. Met.
66
,
295
(
1994
).
9.
J. L.
Brédas
and
G. B.
Street
,
Acc. Chem. Res.
18
,
309
(
1985
).
10.
T. A. Skotheim, Handbook of Conducting Polymers (Dekker, New York, 1986).
11.
J.-L.
Brédas
,
B.
Thémans
,
J. G.
Fripiat
,
J. M.
André
, and
R. R.
Chance
,
Phys. Rev. B
29
,
6761
(
1984
).
12.
C.
Tanaka
,
J.
Tanaka
, and
K.
Hirao
,
Synth. Met.
17
,
19
(
1987
).
13.
M.
Lögdlund
,
P.
Dannetun
,
C.
Frederiksson
,
W. R.
Salaneck
, and
J.
Brédas
,
Synth. Met.
67
,
141
(
1994
).
14.
A. J. W.
Tol
,
Synth. Met.
74
,
95
(
1995
).
15.
A. J. W.
Tol
,
Chem. Phys.
208
,
73
(
1996
).
16.
Y.
Shimoi
and
S.
Abe
,
Phys. Rev. B
50
,
14781
(
1994
).
17.
S.
Xie
,
L.
Mei
, and
D. L.
Lin
,
Phys. Rev. B
50
,
13364
(
1994
).
18.
G.
Iucci
,
K.
Xing
,
M.
Lögdlund
,
M.
Fahlmann
, and
W. R.
Salaneck
,
Chem. Phys. Lett.
244
,
139
(
1995
).
19.
M. G.
Hill
,
K. R.
Mann
,
L. L.
Miller
, and
J.-F.
Penneau
,
J. Am. Chem. Soc.
114
,
2728
(
1992
).
20.
P.
Hapiot
,
P.
Audebert
,
K.
Monnier
,
J.-M.
Pernaut
, and
P.
Garcia
,
Chem. Mater.
6
,
1549
(
1994
).
21.
Y.
Hong
,
Y.
Yu
, and
L. L.
Miller
,
Synth. Met.
74
,
133
(
1995
).
22.
R. K.
Khanna
,
Y. M.
Jiang
,
B.
Srinivas
,
C. B.
Smithhart
, and
D. L.
Wertz
,
Chem. Mater.
5
,
1792
(
1993
).
23.
S.
Irle
and
H.
Lischka
,
J. Chem. Phys.
103
,
1508
(
1995
).
24.
C.
Ehrendorfer
and
A.
Karpfen
,
J. Phys. Chem.
98
,
7492
(
1994
).
25.
C.
Ehrendorfer
and
A.
Karpfen
,
Vib. Spect.
8
,
293
(
1995
).
26.
C.
Ehrendorfer
and
A.
Karpfen
,
J. Mol. Struct.
349
,
417
(
1995
).
27.
C.
Ehrendorfer
and
A.
Karpfen
,
J. Phys. Chem.
99
,
5341
(
1995
).
28.
C.
Ehrendorfer
and
A.
Karpfen
,
J. Phys. Chem.
99
,
10196
(
1995
).
29.
L.
Cuff
,
C.
Cui
, and
M.
Kertesz
,
J. Am. Chem. Soc.
116
,
9269
(
1994
).
30.
S.
Irle
,
H.
Lischka
,
K.
Eichkorn
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
257
,
592
(
1996
).
31.
A. Karpfen (private communication).
32.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1509
(
1955
).
33.
J.
Baker
,
A.
Scheiner
, and
J.
Andzelm
,
Chem. Phys. Lett.
216
,
38
(
1993
).
34.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
35.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
36.
F. W. Bobrowicz and W. A. Goddard III, The self-consistent field equations for generalized valence bond and open-shell hartree-fock wave functions, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3, pp. 79–127.
37.
J. D.
Goddard
,
N. C.
Handy
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
71
,
1525
(
1979
).
38.
R. M. Pitzer, SCFPQ as documented in the COLUMBUS program system (see Ref. 39), Ohio State University, Columbus, Ohio.
39.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lischka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J.-G.
Zhao
,
Int. J. Quantum Chem.
S 22
,
149
(
1988
).
40.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
41.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
42.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
43.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
44.
S.
Irle
and
H.
Lischka
,
J. Mol. Struct. (Theochem)
364
,
15
(
1996
).
45.
R.
Heinzmann
and
R.
Ahlrichs
,
Theor. Chim. Acta
33
,
33
(
1976
).
46.
J.
Chen
,
A. J.
Heeger
, and
F.
Wudl
,
Solid State Commun.
58
,
251
(
1986
).
47.
S. D. V.
Rughooputh
,
M.
Nowak
,
S.
Hotta
,
A. J.
Heeger
, and
F.
Wudl
,
Synth. Met.
21
,
41
(
1987
).
48.
S.
Stafström
and
J.
Fagerström
,
Mol. Cryst. Liq. Cryst.
256
,
209
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.