The ground-state potential energy surface (PES) for linear arrangements of the N2H+ molecular ion is numerically computed by the multireference single- and double-excitation configuration interaction (MRD-CI) technique. An analytical representation of the potential energy function is obtained by fitting a power series in the Simons–Parr–Finlan coordinates to the numerical data. For investigating the intramolecular dynamics we describe the nuclear motion by a Gaussian wave packet located initially in the strong interaction region of the PES. The vibrational eigenvalue spectrum is calculated by Fourier transforming the time autocorrelation function. The spectrum is then analyzed statistically in the light of random matrix theory (RMT) to understand the nature of the intramolecular dynamics. We examine the short-range correlation in the spectrum through the nearest neighbor level spacing distribution P(s) and the long-range correlation through Δ3 and Σ2 statistics. The spectrum in the time domain is analyzed by computing the ensemble averaged survival probability 〈〈P(t)〉〉. The above four quantities obtained from the spectrum are compared with the distribution predicted for regular, irregular, and mixed (intermediate) spectra by the RMT. We find the system is of mixed type and the fractional irregularity is 0.7±0.05. In order to reveal a possible correspondence to the classical dynamics, we have carried out the spectral analysis of the dynamical variables for classical trajectories over a wide range of internal energies. In addition the classical dynamics of proton collisions with N2 molecules has also been preliminarily studied on the same PES, in particular the dependence of the final vibrational action nf on the initial vibrational phase φi of N2 and, furthermore, the Poincaré surface-of-section superimposed with the zero-order separatrix; we find a large number of trapped trajectories.

1.
(a) D. W. Noid, M. L. Koszykowski, and R. A. Marcus, in Quantum Mechanics in Mathematics, Chemistry, and Physics, edited by G. E. Gustafson and W. P. Reinhardt (Plenum, New York, 1981), pp. 133–166;
(b)
E. B.
Stechel
and
E. J.
Heller
,
Annu. Rev. Phys. Chem.
35
,
563
(
1984
);
(c) M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer Verlag, New York, 1991).
2.
(a) Chaotic Behaviour in Quantum Systems: Theory and Applications, edited by G. Casati (Plenum, New York, 1985), Series B: Physics Vol. 120;
(b) Quantum Chaos, edited by H. Cerdeira, R. Ramaswamy, G. Casati, and M. C. Gutzwiller (World Scientific, Singapore, 1991);
(c) Quantum Chaos, edited by G. Casati and B. V. Chirikov (Cambridge U. P., Cambridge, 1994);
(d) Quantum Chaos and Statistical Nuclear Physics, edited by T. H. Seligman and H. Nishioka (Springer, Berlin, 1986).
3.
(a)
B. E.
Turner
,
Astrophys. J.
193
,
L83
(
1974
);
(b)
S.
Green
,
J. A.
Montgomery
,Jr.
, and
P.
Thaddeus
,
Astrophys. J.
193
,
L89
(
1974
); ,
Astrophys. J.
(c)
P.
Thaddeus
and
B. E.
Turner
,
Astrophys. J.
201
,
L25
(
1975
).,
Astrophys. J.
4.
(a)
R. J.
Saykally
,
D. A.
Dixon
,
T. G.
Anderson
,
P. E.
Szanto
, and
R. C.
Woods
,
Astrophys J. Lett.
205
,
101
(
1976
);
(b)
S. C.
Gudeman
,
M. H.
Bageman
,
J.
Pfaff
, and
R. J.
Saykally
,
J. Chem. Phys.
78
,
5837
(
1983
);
(c)
C. S.
Gudeman
and
R. J.
Saykally
,
Annu. Rev. Phys. Chem.
35
,
387
(
1984
);
(d)
J. C.
Owrutsky
,
E. R.
Keim
,
J. V.
Coe
, and
R. J.
Saykally
,
J. Phys. Chem.
93
,
5960
(
1989
);
(e)
E. R.
Keim
,
M. L.
Polak
,
J. C.
Owrutsky
,
J. V.
Coe
, and
R. J.
Saykally
,
J. Chem. Phys.
93
,
3111
(
1990
).
5.
K. V. L. N.
Sastry
,
P.
Helminger
,
E.
Herbst
, and
F. C.
Delucia
,
Chem. Phys. Lett.
84
,
286
(
1981
).
6.
F. C.
Van der Heuvel
and
A.
Dynamus
,
Chem. Phys. Lett.
92
,
219
(
1982
).
7.
T. J.
Sears
,
J. Opt. Soc. Am. B
2
,
786
(
1985
).
8.
S. C.
Foster
and
A. R. W.
McKellar
,
J. Chem. Phys.
81
,
3424
(
1984
).
9.
H.
Sasada
and
T.
Amano
,
J. Chem. Phys.
92
,
2848
(
1990
).
10.
Y.
Kabbadj
,
T. R.
Huet
,
B. D.
Rehfuss
,
C. M.
Gabrys
, and
T.
Oka
,
J. Mol. Spectrosc.
163
,
180
(
1994
).
11.
(a)
P.
Botschwina
,
Chem. Phys. Lett.
107
,
535
(
1984
);
(b) P. Botschwina, in Ion and Cluster Spectroscopy and Structure, edited by J. P. Maier (Elsevier, New York, 1989).
12.
W. P.
Kraemer
,
A.
Komornicki
, and
D. A.
Dixon
,
Chem. Phys.
105
,
87
(
1986
).
13.
Unimolecular and Bimolecular Ion-Molecule Reaction Dynamics, edited by C. Y. Ng, T. Baer, and I. Powis (Wiley Series in Ion Chemistry and Physics, New York, 1994).
14.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
95
,
4378
(
1991
).
15.
H.
Udseth
,
C. F.
Giese
, and
W. R.
Gentry
,
J. Chem. Phys.
60
,
3051
(
1974
).
16.
J.
Krutein
and
F.
Linder
,
J. Chem. Phys.
71
,
599
(
1979
);
U.
Hege
and
F.
Linder
,
Z. Phys. A
320
,
95
(
1985
).
17.
B.
Friedrich
,
F. A.
Gianturco
,
G.
Neidner
,
M.
Noll
, and
J. P.
Toennies
,
J. Phys. B
20
,
3725
(
1987
).
18.
F. A.
Gianturco
,
U.
Gierz
, and
J. P.
Toennies
,
J. Phys. B
14
,
667
(
1981
).
19.
S. Schmatz (preprint).
20.
F. A.
Gianturco
,
S.
Kumar
, and
F.
Schneider
,
Chem. Phys.
211
,
33
(
1996
).
21.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
);
R. J.
Buenker
and
S. D.
Peyerimhoff
,
39
,
217
(
1975
).,
Theor. Chim. Acta
22.
R. J.
Buenker
,
S. D.
Peyerimhoff
, and
W.
Butcher
,
Mol. Phys.
35
,
771
(
1978
).
23.
P. J. Bruna and S. D. Peyerimhoff, in Ab Initio Methods in Quantum Chemistry, edited by K. P. Lawley (Wiley, New York, 1987), Vol. 1.
24.
Th. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
25.
G.
Simons
,
R. G.
Parr
, and
J. M.
Finlan
,
J. Chem. Phys.
59
,
3229
(
1973
).
26.
M. D.
Feit
,
J. A.
Fleck
,Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
);
M. D.
Feit
and
J. A.
Fleck
, Jr.
,
J. Chem. Phys.
78
,
301
(
1983
).
27.
E. J.
Heller
,
J. Chem. Phys.
68
,
3891
(
1978
);
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
28.
R.
Sadeghi
and
R. T.
Skodje
,
J. Chem. Phys.
98
,
9208
(
1993
);
R.
Sadeghi
and
R. T.
Skodje
,
99
,
5126
(
1993
); ,
J. Chem. Phys.
R.
Sadeghi
and
R. T.
Skodje
,
102
,
193
(
1995
).,
J. Chem. Phys.
29.
R. T.
Skodje
,
R.
Sadeghi
,
H.
Köppel
, and
J. L.
Krause
,
J. Chem. Phys.
101
,
1725
(
1994
).
30.
S.
Mahapatra
and
N.
Sathyamurthy
,
J. Chem. Phys.
102
,
6057
(
1995
).
31.
S.
Mahapatra
,
N.
Sathyamurthy
,
S.
Kumar
, and
F. A.
Gianturco
,
Chem. Phys. Lett.
241
,
223
(
1995
).
32.
S.
Mahapatra
and
N.
Sathyamurthy
,
J. Chem. Phys.
105
,
10
934
(
1996
).
33.
A. J. C. Varandas and H. G. Yu, Chem. Phys. (in press).
34.
H. G.
Yu
and
A. J. C.
Varandas
,
J. Phys. Chem.
100
,
14
598
(
1996
);
A. J. C.
Varandas
and
H. G.
Yu
,
Chem. Phys. Lett.
259
,
336
(
1996
).
35.
R.
Kosloff
,
Ann. Rev. Phys. Chem.
45
,
145
(
1994
).
36.
N.
Balakrishnan
,
C.
Kalyanaraman
, and
N.
Sathyamurthy
,
Phys. Rep.
280
,
79
(
1997
).
37.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
38.
S.
Mahapatra
and
N.
Sathyamurthy
,
J. Chem. Soc. Faraday Trans.
93
,
773
(
1997
).
39.
M. D.
Feit
and
J. A.
Fleck
, Jr.
,
Appl. Opt.
19
,
1154
(
1980
).
40.
M. L. Mehta, Random Matrices, 2nd ed. (Academic, New York, 1990).
41.
T. A.
Brody
,
J.
Flores
,
J. B.
French
,
P. A.
Mello
,
A.
Pandey
, and
S. S. M.
Wong
,
Rev. Mod. Phys.
53
,
385
(
1981
).
42.
Th.
Zimmermann
,
L. S.
Cederbaum
,
H.-D.
Meyer
, and
H.
Köppel
,
J. Phys. Chem.
91
,
4446
(
1987
).
43.
C. E. Porter, Statistical Theories of Spectra: Fluctuations (Academic, New York, 1965).
44.
(a)
L. S.
Cederbaum
,
H.
Köppel
, and
W.
Domcke
,
Int. J. Quantum Chem.
15
,
251
(
1981
);
(b)
W.
Domcke
,
H.
Köppel
, and
L. S.
Cederbaum
,
Mol. Phys.
43
,
851
(
1981
).
45.
E.
Haller
,
H.
Köppel
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
101
,
215
(
1983
).
46.
D. M.
Leitner
,
R. S.
Berry
, and
R. M.
Whitnell
,
J. Chem. Phys.
91
,
3470
(
1989
).
47.
R. Ramaswamy in Reaction Dynamics: Recent Advances, edited by N. Sathyamurthy (Narosa Press, New Delhi, 1990), pp. 101–119;
R. Ramaswamy in Atomic and Molecular Physics, edited by A. P. Pathak (Narosa Press, New Delhi, 1992), pp. 112–117.
48.
K.
Someda
,
R.
Ramaswamy
, and
H.
Nakamura
,
J. Chem. Phys.
98
,
1156
(
1993
).
49.
S.
Mahapatra
,
R.
Ramaswamy
, and
N.
Sathyamurthy
,
J. Chem. Phys.
104
,
3989
(
1996
).
50.
S.
Mahapatra
,
N.
Sathyamurthy
, and
R.
Ramaswamy
,
Pramana J. Phys.
47
,
411
(
1997
).
51.
V. A.
Mandelshtam
,
T. P.
Grozdanov
, and
H. S.
Taylor
,
J. Chem. Phys.
103
,
10
074
(
1995
).
52.
A. J.
Dobbyn
,
M.
Stumpf
,
H.-M.
Keller
, and
R.
Schinke
,
J. Chem. Phys.
103
,
9947
(
1995
).
53.
S.
Mahapatra
,
J. Chem. Phys.
105
,
344
(
1996
).
54.
D. M.
Leitner
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Chem. Phys.
104
,
434
(
1996
).
55.
S. S. M.
Wong
and
J. B.
French
,
Nucl. Phys. A
198
,
188
(
1972
);
R.
Venkatraman
,
J. Phys. B
15
,
4293
(
1982
).
56.
M. V.
Berry
and
M.
Tabor
,
Proc. R. Soc. London, Ser. A
356
,
375
(
1977
).
57.
M. V.
Berry
and
M.
Robnik
,
J. Phys. A
17
,
2413
(
1984
).
58.
F. J.
Dyson
and
M. L.
Mehta
,
J. Math. Phys.
4
,
701
(
1963
).
59.
O.
Bohigas
and
M.-J.
Gianonni
,
Ann. Phys. (N.Y.)
89
,
393
(
1975
).
60.
S.
Sinha
and
R.
Ramaswamy
,
J. Phys. B
22
,
2985
(
1989
).
61.
A.
Pandey
,
Ann. Phys. (N.Y.)
119
,
170
(
1979
).
62.
R. Ramaswamy in Schrödinger Centenary Surveys in Physics, edited by V. Singh and S. Lal (World Scientific, Singapore, 1988), pp. 236.
63.
P.
Pechukas
,
Chem. Phys. Lett.
86
,
553
(
1982
).
64.
R. D.
Levine
and
J. L.
Kinsey
,
Proc. Natl. Acad. Sci. (USA)
88
,
11
133
(
1991
).
65.
J.
Wilkie
and
P.
Brumer
,
Phys. Rev. Lett.
67
,
1185
(
1991
).
66.
Y.
Alhassid
and
R. D.
Levine
,
Phys. Rev. A
46
,
4650
(
1992
).
67.
Y.
Alhassid
and
N.
Whelan
,
Phys. Rev. Lett.
70
,
572
(
1993
).
68.
Ch.
Zuhrt
,
L.
Zülicke
, and
X.
Chapuisat
,
Chem. Phys.
166
,
1
(
1992
).
69.
(a)
S. R.
Channon
and
J. L.
Lebowitz
,
Ann. (N.Y.) Acad. Sci.
357
,
108
(
1980
);
(b)
R. S.
Mackay
,
J. D.
Meiss
, and
I. C.
Percival
,
Physica D
13
,
55
(
1984
).
70.
M. J.
Davis
and
S. K.
Gray
,
J. Chem. Phys.
84
,
5389
(
1986
).
71.
V.
Balasubramanian
,
B. K.
Mishra
,
A.
Bahel
,
S.
Kumar
, and
N.
Sathyamurthy
,
J. Chem. Phys.
95
,
4160
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.