We investigate whether the electric field gradient (EFG) at an atomic site in the unit cell of a periodic solid can be modeled via the electrostatic field gradient set up by atomic point charges outside that site. To test this approach we contrast the EFG predicted by such point-ion models for long-range ordered GaInP2 alloys with the results obtained from self-consistent all-electron calculations in the local density approximation (LDA). We first tested our LDA approach for ZnAl2O4, for which experimental data exist, finding the quadrupole coupling constant Qcc(27Al)=3.94 MHz, compared with the measured value of |Q|=3.68 MHz. Applying next the LDA approach to perfectly ordered GaInP2 (for which experimental data do not exist), we find the LDA quadrupole coupling constant Qcc=−4.83,−2.84, and 13.08 MHz for Ga69, Ga71, and In115, respectively. We further find that more than 95% of these EFGs originate from the anisotropic electron charge distribution within a small sphere of radius ∼0.2 Å about the respective atomic site. Hence, the point-ion model significantly underestimates the magnitude of the EFG (and in some cases also gives an incorrect sign). The point-ion model also fails in reproducing the relative trends in the EFG as the crystal structure changes. We conclude that the point-ion model is not a viable alternative to calculate EFG in periodic covalent solids.

1.
A. Zunger and S. Mahajan, in Handbook of Semiconductors, 2nd ed. (Elsevier, Amsterdam, 1994), Vol. 3, p. 1339, and references therein.
2.
S.-H.
Wei
,
D. B.
Laks
, and
A.
Zunger
,
Appl. Phys. Lett.
62
,
1937
(
1993
).
3.
S.-H. Wei, A. Franceschetti, and A. Zunger, in Optoelectronic Materials—Ordering, Composition Modulation, and Self-Assembled Structures, edited by E. D. Jones, A. Mascarenhas, and P. Petroff (MRS, Pittsburgh, 1996), p. 3, and references therein.
4.
R.
Osorio
,
J. E.
Bernard
,
S.
Froyen
, and
A.
Zunger
,
Phys. Rev. B
45
,
11
,
173
(
1992
).
5.
C. S.
Baxter
,
R. F.
Broom
, and
W. M.
Stobbs
,
Surf. Sci.
228
,
102
(
1990
).
6.
S.
Yasuami
,
K.
Koga
,
K.
Ohshima
,
S.
Sasaki
, and
M.
Ando
,
J. Appl. Crystallogr.
25
,
514
(
1992
).
7.
D.
Mao
,
P. C.
Taylor
,
S. R.
Kurtz
,
M. C.
Wu
, and
W. A.
Harrison
,
Phys. Rev. Lett.
76
,
4769
(
1996
).
8.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
9.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
10.
O. K.
Andersen
,
Phys. Rev. B
12
,
3060
(
1975
);
D. D.
Koelling
and
G. O.
Arbman
,
J. Phys. F
5
,
2041
(
1975
);
E.
Wimmer
,
H.
Krakauer
,
M.
Weinert
, and
A. J.
Freeman
,
Phys. Rev. B
24
,
864
(
1981
);
S.-H.
Wei
and
H.
Krakauer
,
Phys. Rev. Lett.
55
,
1200
(
1985
).
11.
D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer, Boston, 1994), and references therein.
12.
D. J.
Singh
,
Phys. Rev. B
43
,
6388
(
1991
).
13.
K.
Schwarz
,
C.
Ambrosch-Draxl
, and
P.
Blaha
,
Phys. Rev. B
42
,
2051
(
1990
).
14.
J.
Yu
,
A. J.
Freeman
,
R.
Podloucky
,
P.
Herzig
, and
P.
Weinberger
,
Phys. Rev. B
43
,
532
(
1991
).
15.
D.
Singh
,
K.
Schwarz
, and
P.
Blaha
,
Phys. Rev. B
46
,
5849
(
1992
).
16.
M.
Weinert
,
J. Math. Phys.
22
,
2433
(
1981
).
17.
P.
Blaha
,
K.
Schwarz
, and
P.
Herzig
,
Phys. Rev. Lett.
54
,
1192
(
1985
).
18.
D. W.
Mitchell
,
T. P.
Das
,
W.
Potzel
,
W.
Schiessl
,
H.
Karzel
,
M.
Steiner
,
M.
Köfferlein
,
U.
Hiller
,
G. M.
Kalvins
,
A.
Martin
,
W.
Schäfer
,
G.
Will
,
I.
Halevy
, and
J.
Gal
,
Phys. Rev. B
53
,
7684
(
1996
).
19.
P.
Rueggsegger
,
F.
Waldner
, and
E.
Burn
,
Helv. Phys. Acta
43
,
799
(
1970
).
20.
D.
Sundholm
and
J.
Olsen
,
Phys. Rev. Lett.
68
,
927
(
1992
).
21.
D. M.
Ceperly
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
22.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
23.
S.
Froyen
,
Phys. Rev. B
39
,
3168
(
1989
).
24.
Treating the “outer core” states (Ga 3s, 3p and In 4s, 4p) as valence bands does not change our calculated results.
25.
C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, New York, 1978).
26.
CRC Handbook of Chemistry and Physics, 76th ed., edited by A. R. Lide and H. P. R. Frederikse (CRC, New York, 1996).
27.
W. A. Harrison, Electronic Structure and the Properties of Solids (W. H. Freeman, Oxford, 1979).
This content is only available via PDF.
You do not currently have access to this content.