Dielectric measurements were carried out on viscous toluene covering a frequency range from 0.1 Hz to 1 MHz. In order to suppress the pronounced crystallization tendency of this supercooled liquid it was contained in thin walled capillaries with outer diameters of 300 μm. From the temperature dependence of the characteristic dielectric relaxation times it was found that toluene is one of the most fragile low molecular weight glass-forming liquids, with a fragility index m=105. By comparison with time constants available from other experimental techniques it appears that near the glass transition the dielectric relaxation mode is not the slowest one.

1.
R. Schilling, in Disorder Effects on Relaxational Processes, edited by R. Richert and A. Blumen (Springer, Berlin, 1994), p. 193.
2.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
3.
C. M.
Whitaker
and
R. J.
McMahon
,
J. Phys. Chem.
100
,
1081
(
1996
).
4.
C.
Alba
,
L. E.
Busse
,
D. J.
List
, and
C. A.
Angell
,
J. Chem. Phys.
92
,
617
(
1990
), and references cited therein.
5.
R. Böhmer and C. A. Angell, in Disorder Effects on Relaxation Processes, edited by R. Richert and A. Blumen (Springer, Berlin, 1994), p. 11.
6.
See, e.g., (a) K. L. Ngai and R. W. Rendell, in Relaxation in Complex Systems and Related Topics, edited by I. A. Campbell and C. Giovanella (Plenum, New York, 1990), p. 309;
(b)
R. V.
Chamberlin
,
Phys. Rev. B
48
,
15
,
638
(
1993
);
(c)
J. C.
Phillips
,
Rep. Prog. Phys.
59
,
1133
(
1996
).
7.
A. J.
Barlow
,
J.
Lamb
, and
A. J.
Matheson
,
Proc. R. Soc. A
292
,
322
(
1966
).
8.
C.
Levy
and
G.
D’Arrigo
,
Mol. Phys.
50
,
917
(
1983
).
9.
V. A.
Santarelli
,
J. A.
MacDonald
, and
C.
Pine
,
J. Chem. Phys.
46
,
2367
(
1967
).
10.
E.
Rössler
and
H.
Sillescu
,
Chem. Phys. Lett.
112
,
94
(
1984
), and references cited therein.
11.
G.
Hinze
and
H.
Sillescu
,
J. Chem. Phys.
104
,
314
(
1996
), and references cited therein.
12.
G.
Hinze
,
H.
Sillescu
, and
F.
Fujara
,
Chem. Phys. Lett.
232
,
154
(
1995
).
13.
H. D.
Rudolph
,
H.
Dreizler
,
A.
Jaeschke
, and
P.
Wendling
,
Z. Naturforsch.
22a
,
940
(
1967
).
14.
It appears that the xylenes would be suitable candidates, see also Ref. 4.
15.
G.
Liu
,
M.
Mackowiak
,
Y.
Li
, and
J.
Jonas
,
J. Chem. Phys.
94
,
239
(
1990
).
16.
For a brief description, see
H.
Schlaad
and
A. H. E.
Müller
,
Makromol. Rapid Commun.
16
,
399
(
1995
).
17.
The glass capillaries used for this study were Mark tubes obtained from Hilgenberg Co., 34321 Malsfeld, Germany.
18.
The squared refractive index of the glass tubes is very similar to the permittivity of the toluene sample which changes not dramatically across the dispersive regime. Therefore corrections that sometimes are required when dealing with heterogeneous dielectrics are relatively small, cf. § 98 in, C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization (Elsevier, Amsterdam, 1978), Vol. 2.
19.
The most pronounced correction was found to be necessary when dealing with the case of a thin walled cylinder in a parallel plate capacitor, ε∝εt/[(εt+1)2t], cf. M. Clausse, Encyclopedia of Emulsion Technology, edited by P. Becher (Marcel Dekker, New York, 1983), Vol. 1, p. 481. Here ε denotes the measured dielectric loss, while εt is the permittivity of the sample liquid.
20.
After the present work was submitted we received a paper by A. Kudlik, C. Tschirwitz, S. Benkhof, T. Blochowicz, and E. Rössler (preprint) where the Johari-Goldstein process in supercooled toluene is studied in detail.
21.
J. Hemberger, R. Böhmer, and A. Loidl (unpublished).
22.
The validity of the description of the primary response in terms of a distribution of relaxation times has recently been confirmed experimentally for several supercooled liquids. See
B.
Schiener
,
R.
Böhmer
,
A.
Loidl
, and
R. V.
Chamberlin
,
Science
274
,
752
(
1996
);
B. Schiener, R. V. Chamberlin, G. Diezemann, and R. Böhmer, J. Chem. Phys. (submitted).
23.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
);
R.
Böhmer
,
J. Non-Cryst. Solids
172–174
,
628
(
1994
).
24.
S.
Havriliak
and
S.
Negami
,
J. Polym. Sci. C
14
,
99
(
1966
).
25.
Using ε = 2.25,Δε = 0.60, and βCD = 0.32 in conjunction with Ref. 19 and Eq. (1), it can be estimated that the capillary effect leads to an apparent speed-up of the relaxation by 0.09 decades. In view of the uncertainty of the permittivity parameters given above we will not consider this very small correction further.
26.
It should be noted that Tg = T(τ = 100 s) as extrapolated from our dielectric data is about 2 K below Tg,cal, see Ref. 4. Furthermore, the parameters given here do not extrapolate to predict the high temperature relaxation time data of Ref. 9, a situation that has been noted similarly by, e.g.,
P. K.
Dixon
,
Phys. Rev. B
42
,
8179
(
1990
);
C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer, J. Chem. Phys. (submitted), and references cited therein.
27.
P. K.
Dixon
,
L.
Wu
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
,
Phys. Rev. Lett.
65
,
1108
(
1990
).
28.
Note that the small corrections due to the present sample geometry, not taken into account in Fig. 4, would slightly enhance the disagreement with the NMR data.
29.
G. Hinze, Phys. Rev. E (submitted).
30.
For example,
G.
Williams
,
Chem. Soc. Rev.
7
,
89
(
1978
).
31.
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
F.
Fleischer
,
Z. Phys. B
88
,
195
(
1992
).
32.
I. Chang and H. Sillescu, J. Phys. Chem. (in press).
33.
N.
Menon
,
S. R.
Nagel
, and
D. C.
Venerus
,
Phys. Rev. Lett.
73
,
963
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.