An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values.

1.
Organic Materials for Nonlinear Optics, edited by D. S. Chemla and J. Zyss (Academic, New York, 1987), Vols. 1 and 2.
2.
P. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
3.
Molecular nonlinear optics; special issue of Int. J. Quantum Chem. 43, (1992).
4.
Optical Nonlinearities in Chemistry; monographic issue of Chem. Rev. (Jan.) 94, (1994).
5.
J. M.
André
and
J.
Delhalle
,
Chem. Rev.
91
,
843
(
1991
).
6.
D. M.
Bishop
,
Adv. Quantum Chem.
25
,
1
(
1994
).
7.
J. L.
Brédas
,
Science
263
,
487
(
1994
).
8.
S. R.
Marder
,
L. T.
Cheng
,
B. G.
Tiemann
,
A. C.
Friedli
,
M.
Blanchard-Desce
,
J. W.
Perry
, and
J.
Skindo/j
,
Science
263
,
511
(
1994
).
9.
S. R.
Marder
,
C. B.
Gorman
,
F.
Meyers
,
J. W.
Perry
,
G.
Bourhill
,
J. L.
Brédas
, and
B. M.
Pierce
,
Science
265
,
632
(
1994
).
10.
J. L.
Brédas
and
F.
Meyers
,
Nature (London)
375
,
362
(
1995
).
11.
G. J.
Ashwell
,
G.
Jeffries
,
D. G.
Hamilton
,
D. E.
Lynch
,
M. P. S.
Roberts
,
G. S.
Bahra
, and
C. R.
Brown
,
Nature (London)
375
,
385
(
1995
).
12.
M.
Ahlheim
,
M.
Barzoukas
,
P. V.
Bedworth
,
M.
Blanchard-Desce
,
A.
Fort
,
Z-Y.
Hu
,
S. R.
Marder
,
J. W.
Perry
,
C.
Runser
,
M.
Staehelin
, and
B.
Zysset
,
Science
271
,
335
(
1996
).
13.
L.
Adamowicz
and
R. J.
Bartlett
,
J. Chem. Phys.
84
,
4988
(
1986
);
L.
Adamowicz
and
R. J.
Bartlett
,
86
,
7250
(
1987
).,
J. Chem. Phys.
14.
M.
Duran
,
J. L.
Andrés
,
A.
Lledós
, and
J.
Bertrán
,
J. Chem. Phys.
90
,
328
(
1989
).
15.
J. L.
Andrés
,
A.
Lledós
,
M.
Duran
, and
J.
Bertrán
,
Chem. Phys. Lett.
153
,
82
(
1989
).
16.
J. L.
Andrés
,
M.
Duran
,
A.
Lledós
, and
J.
Bertrán
,
Chem. Phys.
151
,
37
(
1991
).
17.
J. L.
Andrés
,
J.
Martí
,
M.
Duran
,
A.
Lledós
, and
J.
Bertrán
,
J. Chem. Phys.
95
,
3521
(
1991
).
18.
G.
Alagona
,
R.
Camini
,
C.
Ghio
, and
J.
Tomasi
,
Theoret. Chim. Acta
85
,
167
(
1993
).
19.
J.
Martí
,
J. L.
Andrés
,
J.
Bertrán
, and
M.
Duran
,
Mol. Phys.
80
,
625
(
1993
).
20.
J. L.
Andrés
,
J.
Bertrán
,
M.
Duran
, and
J.
Martí
,
J. Phys. Chem.
98
,
2803
(
1994
).
21.
J. L.
Andrés
,
J.
Bertrán
,
M.
Duran
, and
J.
Martí
,
Int. J. Quantum Chem.
52
,
9
(
1994
).
22.
(a)
M. J.
Cohen
,
A.
Willets
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
100
,
4467
(
1994
);
(b)
M. G.
Papadopolous
,
A.
Willets
,
N. C.
Handy
, and
A. E.
Underhill
,
Mol. Phys.
88
,
1063
(
1996
).
23.
J. M.
Luis
,
J.
Martí
,
M.
Duran
, and
J. L.
Andrés
,
J. Chem. Phys.
102
,
7573
(
1995
).
24.
B.
Champagne
,
H.
Vanderheoven
,
E. A.
Perpète
, and
J. M.
André
,
Chem. Phys. Lett.
248
,
301
(
1996
).
25.
D. M.
Bishop
,
M.
Hasan
, and
B.
Kirtman
,
J. Chem. Phys.
103
,
4157
(
1995
).
26.
J. M.
Luis
,
J.
Martí
,
M.
Duran
, and
J. L.
Andrés
,
Chem. Phys.
217
,
29
(
1997
).
27.
P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1993).
28.
D. P.
Shelton
and
J. J.
Palubinskas
,
J. Chem. Phys.
104
,
2482
(
1996
).
29.
C.
Castiglioni
,
M.
Gussoni
,
M.
Del Zoppo
, and
G.
Zerbi
,
Solid State Commun.
82
,
13
(
1993
).
30.
C.
Castiglioni
,
M.
del Zoppo
, and
G.
Zerbi
,
Phys. Rev. B
53
,
13319
(
1996
).
31.
B. J.
Orr
and
J. F.
Ward
,
Mol. Phys.
20
,
513
(
1971
).
32.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
95
,
2646
(
1991
);
D. M.
Bishop
and
B.
Kirtman
,
97
,
5255
(
1992
).,
J. Chem. Phys.
33.
D. M.
Bishop
,
B.
Kirtman
,
H. A.
Kurzt
, and
J. E.
Rice
,
J. Chem. Phys.
98
,
8024
(
1993
).
34.
D. M.
Bishop
and
J.
Pipin
,
J. Chem. Phys.
103
,
4980
(
1995
).
35.
B.
Champagne
,
E. A.
Perpète
, and
J. M.
André
,
J. Chem. Phys.
101
,
10796
(
1994
).
36.
D.
Jacquemin
,
B.
Champagne
, and
J. M.
André
,
Chem. Phys.
197
,
107
(
1995
).
37.
F.
Meyers
,
S. R.
Marder
,
B. M.
Pierce
, and
J. L.
Brédas
,
J. Am. Chem. Soc.
116
,
10703
(
1994
).
38.
N.
Matsuzawa
and
D. A.
Dixon
,
J. Phys. Chem.
98
,
11669
(
1994
).
39.
D. L.
Albert
,
J. O.
Morley
, and
D.
Pugh
,
J. Chem. Phys.
102
,
237
(
1995
).
40.
T.
Hara
,
Y.
Nomura
,
S.
Narita
, and
T.
Shibuya
,
Chem. Phys. Lett.
240
,
610
(
1995
).
41.
J. O.
Morley
,
J. Phys. Chem.
99
,
1923
(
1995
).
42.
B.
Kirtman
,
J. L.
Toto
,
K. A.
Robins
, and
M.
Hasan
,
J. Chem. Phys.
102
,
5350
(
1995
).
43.
T. T.
Toto
,
J. L.
Toto
,
C. P.
de Melo
,
M.
Hasan
, and
B.
Kirtman
,
Chem. Phys. Lett.
244
,
59
(
1995
).
44.
C. W.
Kern
and
R. L.
Matcha
,
J. Chem. Phys.
49
,
2081
(
1968
).
45.
W. C.
Ermler
and
C. W.
Kern
,
J. Chem. Phys.
55
,
4851
(
1971
).
46.
B. J.
Krohn
,
W. C.
Ermler
, and
C. W.
Kern
,
J. Chem. Phys.
60
,
22
(
1974
).
47.
H. J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
).
48.
A. J.
Russell
and
M. A.
Spackman
,
Mol. Phys.
84
,
1239
(
1995
);
A. J.
Russell
and
M. A.
Spackman
,
88
,
1109
(
1996
).,
Mol. Phys.
49.
P. K. K.
Pandey
and
D. P.
Santry
,
J. Chem. Phys.
73
,
2899
(
1980
).
50.
D.
Rinaldi
,
M. F.
Ruiz-López
,
M. T. C.
Martins Costa
, and
J. L.
Rivail
,
Chem. Phys. Lett.
128
,
177
(
1986
).
51.
C. E.
Dykstra
and
D. J.
Malik
,
J. Chem. Phys.
87
,
2806
(
1987
).
52.
D. J.
Malik
,
J. Chem. Phys.
88
,
2624
(
1988
).
53.
J.
Martí
and
D. M.
Bishop
,
J. Chem. Phys.
99
,
3860
(
1993
).
54.
Y. Yamaguchi, Y. Osamara, J. D. Gooddard, and H. F. Schaefer III, A New Dimension to Quantum Chemistry: Analitic Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford University Press, London, 1994).
55.
R. D. Amos, Ab initio Methods in Quantum Chemistry, edited by K. P. Lawley (Wiley, London, 1987).
56.
D. K.
Lambert
,
J. Chem. Phys.
94
,
6237
(
1991
).
57.
C. Castiglioni, M. del Zoppo, P. Zuliani, and G. Zesbi, Synth. Met. 99 (1995).
58.
M.
del Zoppo
,
C.
Castiglioni
, and
G.
Zerbi
,
Nonlinear Opt.
9
,
73
, (
1995
).
59.
P.
Zuliani
,
M.
del Zoppo
,
C.
Castiglioni
,
G.
Zerbi
,
S. R.
Mardes
, and
V. W.
Perry
,
J. Chem. Phys.
103
,
9935
(
1995
).
60.
(a)
J. S.
Huzinaga
,
J. Chem. Phys.
42
1293
(
1965
);
(b)
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).,
J. Chem. Phys.
61.
GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andrés, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. González, and J. A. Pople (Gaussian, Inc., Pittsburgh, 1995).
62.
Program AEEP, J. M. Luis, J. L. Andrés, M. Duran, UdG, 1996.
63.
W. F.
Murphy
,
J. Chem. Phys.
67
,
5877
, (
1977
).
64.
J. E.
Rice
,
J. Chem. Phys.
96
,
7580
, (
1992
).
65.
H.
Sekino
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
3022
, (
1993
).
66.
Handbook of Chemistry and Physics, 76th ed., edited by D. R. Lide (CRC, New York, 1995–1996).
This content is only available via PDF.
You do not currently have access to this content.