Vapor-deposited amorphous water ice, when warmed above the glass transition temperature (120–140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140–210 K, where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 μm absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature, whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O–H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature, where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

1.
J. A.
McMillan
and
S. C.
Los
,
Nature
206
,
806
(
1965
).
2.
M.
Sugisaki
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
41
,
2591
(
1968
).
3.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
93
,
7751
(
1989
).
4.
A.
Rice
,
M. S.
Bergren
, and
L.
Swingle
,
Chem. Phys. Lett.
59
,
14
(
1978
).
5.
R. J.
Speedy
,
Nature
380
,
289
(
1996
).
6.
H.
Tanaka
,
Nature
380
,
328
(
1996
).
7.
C. A.
Angell
,
J. Phys. Chem.
97
,
6339
(
1993
).
8.
P.
Jenniskens
and
D. F.
Blake
,
Astrophys. J.
473
,
1104
(
1996
).
9.
R. J.
Speedy
,
J. Phys. Chem.
96
,
2322
(
1992
).
10.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Science
273
,
90
(
1996
).
11.
L. G.
Dowell
and
A. P.
Rinfret
,
Nature
188
,
1144
(
1960
).
12.
P.
Jenniskens
and
D. F.
Blake
,
Science
265
,
753
(
1994
).
13.
M. R. S.
McCoustra
and
A. B.
Horn
,
Chem. Soc. Rev.
23
,
195
(
1994
).
14.
S. F. Banham, Ph.D. thesis, University of East Anglia, Norwich, United Kingdom, 1995.
15.
D. F. Blake, G. Palmer, in Analysis of Cometary and Interstellar Ice Analogs in the Electron Microscope, edited by D. G. Howitt (San Francisco, California, 1991), p. 293.
16.
P.
Jenniskens
,
D. F.
Blake
,
M. A.
Wilson
, and
A.
Pohorille
,
Astrophys. J.
455
,
389
(
1995
).
17.
P. A.
Thiel
and
T. E.
Madey
,
Surf. Sci. Rep.
7
,
211
(
1987
).
18.
R. V.
Kasza
,
K.
Griffiths
,
V. P.
Zhdanov
, and
P. R.
Norton
,
Appl. Surf. Sci.
84
,
97
(
1995
).
19.
B. W.
Callen
,
K.
Griffiths
, and
P. R.
Norton
,
Surf. Sci. Lett.
261
,
44
(
1992
).
20.
A. H.
Hardin
and
K. B.
Harvey
,
Spectrochem. Acta Part A
29
,
1139
(
1973
).
21.
E.
Whalley
,
Can. J. Chem.
55
,
3429
(
1977
).
22.
M. S.
Bergren
,
D.
Schuh
,
M. G.
Sceats
, and
S. A.
Rice
,
J. Chem. Phys.
69
,
3477
(
1978
).
23.
R.
McGraw
,
W. G.
Madden
,
M. S.
Bergren
,
S. A.
Rice
, and
M. G.
Sceats
,
J. Chem. Phys.
69
,
3483
(
1978
).
24.
B.
Rowland
and
J. P.
Devlin
,
J. Chem. Phys.
94
,
812
(
1991
).
25.
B. G.
Koehler
,
L. S.
McNeill
,
A. M.
Middlebrook
, and
M. A.
Tolbert
,
J. Geophys. Res.
980
,
10563
(
1993
).
26.
J. P.
Devlin
and
V.
Buch
,
J. Phys. Chem.
99
,
16534
(
1995
).
27.
S. A.
Sandford
and
L. J.
Allamandola
,
Icarus
76
,
201
(
1988
).
28.
A. W. Adamson, Physical Chemistry of Surfaces, 4th ed. (Wiley, New York, 1982), p. 4.
29.
N.
Ockman
,
Adv. Phys.
7
,
199
(
1958
).
30.
J. E.
Bertie
and
E.
Whalley
,
J. Chem. Phys.
40
,
1637
(
1964
).
31.
P. V. Hobbs, Ice Physics (Clarendon, Oxford, 1974), p. 44.
32.
M.
Fischer
,
J. P.
Devlin
,
J. Phys. Chem.
99
,
11584
(
1995
).
33.
R. J.
Speedy
,
P. G.
Debenedetti
,
R. S.
Smith
,
C.
Huang
, and
B. D.
Kay
,
Chem. Phys.
105
,
240
(
1996
).
34.
M. Sugisaki, H. Suga, S. Seki, in Physics and Chemistry of Ice, edited by N. Riehl, B. Bullemer, H. Engelhardt (Plenum, New York, 1969), p. 329.
35.
Y. P.
Handa
,
O.
Mishima
, and
E.
Whalley
,
J. Chem. Phys.
84
,
2766
(
1986
).
36.
R. H.
Beaumont
,
H.
Chihara
, and
J. A.
Morrison
,
J. Chem. Phys.
34
,
1456
(
1961
).
37.
J. E.
Bertie
,
L. D.
Calvert
, and
E.
Whalley
,
J. Chem. Phys.
38
,
840
(
1963
).
38.
T. C.
Sivakumar
,
S. A.
Rice
, and
M. C.
Sceats
,
J. Chem. Phys.
69
,
3468
(
1978
).
39.
W.
Hagen
,
A. G. G. M.
Tielens
, and
J. M.
Greenberg
,
Chem. Phys.
56
,
367
(
1981
).
40.
W.
Hagen
,
A. G. G. M.
Tielens
, and
J. M.
Greenberg
,
Astron. Astrophys. Suppl. Ser.
51
,
389
(
1983
).
41.
R. H.
Lyddane
,
R. G.
Sachs
, and
E.
Teller
,
Phys. Rev.
59
,
673
(
1941
).
42.
A.
Lehmann
,
Phys. Status Solidi B
148
,
401
(
1988
).
43.
A. B.
Horn
,
S. F.
Banham
, and
M. R. S.
McCoustra
,
J. Chem. Soc., Faraday. Trans.
91
,
4005
(
1995
).
44.
O. S. Heavens, in Optical Properties of Thin Solid Films (Butterworths, London, 1955).
45.
B. Schmitt, R. Grim, and M. Greenberg, in 22nd Eslab Symposium on Infrared Spectroscopy in Astronomy (ESA-SP 290 Salamanca Spain, 1989), p. 213
46.
B. Schmitt, S. R. J. A. Grim, J. M. Greenberg, and J. Klinger, in Physics and Chemistry of Ice, edited by N. Maeno, and T. Hondoh (Hokkaido University Sapporo, 1992), p. 344.
This content is only available via PDF.
You do not currently have access to this content.