The long-standing problem of the topography, energetics, and vibrational dynamics of the ground-state surface of SiC2 is systematically investigated by means of the gamut of state-of-the-art electronic structure methods, including single-reference correlation techniques as extensive as the coupled-cluster singles and doubles method augmented by a perturbative triples term [CCSD(T)], the Brueckner doubles method (BD) with analogous contributions from both triple and quadruple excitations [BD(TQ)], and second-through fifth-order Mo/ller–Plesset perturbation theory (MP2–MP5), as well as the multiconfigurational complete-active-space self-consistent-field [CASSCF(12,12)] approach. The one-particle basis sets for these studies ranged from Si[6s4p1d],C[4s2p1d] to Si[7s6p4d3f2g1h],C[6s5p4d3f2g1h]. The methodological analysis resolves the polytopism problem regarding the mercurial potential energy surface for the circumnavigation of Si+ about C2 in silicon dicarbide, whose topography is shown to exhibit almost all conceivable variations with level of theory. It is concluded that the X̃ 1A1 global minimum of SiC2 is a T-shaped (C2v) structure connected monotonically to a linear transition state 5.8 kcal mol−1 higher in energy, thus ruling out any metastable linear isomer. Previously undocumented bent transition states and L-shaped minima are encountered at relatively high levels of theory, but ultimately these stationary points are shown to be spurious. High-level focal-point thermochemical analyses yield D0(Si–C2)=151 kcal mol−1, and hence a substantial revision is made in the heat of formation, viz., ΔHf,0(SiC2)=+155 kcal mol−1. A complete quartic force field about the T-shaped minimum is determined at the CCSD(T) level with the aug-cc-pVTZ (Si[6s5p3d2f],C[5s4p3d2f]) basis set and then employed in a preliminary probe of contours for large-amplitude motion, anharmonicity of the vibrations, and zero-point effects on the molecular structure.

1.
P. W.
Merrill
,
Publ. Astron. Soc. Pac.
38
,
175
(
1926
).
2.
R. F.
Sanford
,
Publ. Astron. Soc. Pac.
38
,
177
(
1926
).
3.
A.
McKellar
,
J. R. Astron. Soc. Can.
41
,
147
(
1947
).
4.
R. F.
Sanford
,
Astrophys. J.
111
,
262
(
1950
).
5.
B.
Kleman
,
Astrophys. J.
123
,
162
(
1956
).
6.
J.
Drowart
,
G.
De Maria
, and
M. G.
Inghram
,
J. Chem. Phys.
29
,
1015
(
1958
).
7.
W.
Weltner
and
D.
McLeod
,
J. Chem. Phys.
41
,
235
(
1964
).
8.
R. D.
Verma
and
S.
Nagaraj
,
Can. J. Phys.
52
,
1938
(
1974
).
9.
V. E.
Bondybey
,
J. Phys. Chem.
86
,
3396
(
1982
).
10.
E. A.
Rohleng
,
J. Chem. Phys.
91
,
4531
(
1989
).
11.
S.
Green
,
Astrophys. J.
266
,
895
(
1983
).
12.
D. L.
Michalopoulos
,
M. E.
Geusic
,
P. R. R.
Langridge-Smith
, and
R. E.
Smalley
,
J. Chem. Phys.
80
,
3556
(
1984
).
13.
R. S.
Grev
and
H. F.
Schaefer
,
J. Chem. Phys.
80
,
3552
(
1984
).
14.
P.
Thaddeus
,
S. E.
Cummins
, and
R. A.
Linke
,
Astrophys. J.
283
,
L45
(
1984
).
15.
L. E.
Snyder
,
C.
Henkel
,
J. M.
Hollis
, and
F. J.
Lovas
,
Astrophys. J.
290
,
L29
(
1985
).
16.
J.
Cernicharo
,
C.
Kahane
,
J.
Gómez-González
, and
M.
Guélin
,
Astron. Astrophys.
167
,
L9
(
1986
).
17.
R. A.
Shepherd
and
W. R. M.
Graham
,
J. Chem. Phys.
82
,
4788
(
1985
).
18.
R. A.
Shepherd
and
W. R. M.
Graham
,
J. Chem. Phys.
88
,
3399
(
1988
).
19.
J. D.
Presilla-Márquez
,
W. R. M.
Graham
, and
R. A.
Shepherd
,
J. Chem. Phys.
93
,
5424
(
1990
).
20.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
21.
H.
Bredohl
,
I.
Dubois
,
H.
Leclercq
, and
F.
Mélen
,
J. Mol. Spectrosc.
128
,
399
(
1988
).
22.
C. A.
Gottlieb
,
J. M.
Vrtílek
, and
P.
Thaddeus
,
Astrophys. J.
343
,
L29
(
1989
).
23.
J.
Cernicharo
,
C. A.
Gottlieb
,
M.
Guélin
,
P.
Thaddeus
, and
J. M.
Vrtílek
,
Astrophys. J.
341
,
L25
(
1989
).
24.
R. D.
Suenram
,
F. J.
Lovas
, and
K.
Matsumura
,
Astrophys. J.
342
,
L103
(
1989
).
25.
J.
Cernicharo
,
M.
Guélin
,
C.
Kahane
,
M.
Bogey
,
C.
Demuynck
, and
J. L.
Destombes
,
Astron. Astrophys.
246
,
213
(
1991
).
26.
M.
Bogey
,
C.
Demuynck
,
D. L.
Destombes
, and
A. D.
Walters
,
Astron. Astrophys.
247
,
L13
(
1991
).
27.
M. Bogey, M. Cordonnier, C. Demuynck, and J. L. Destombes, in Structures and Conformations of Non-Rigid Molecules, edited by J. Laane, M. Dakkouri, B. van der Veken, and H. Oberhammer (Kluwer, Dordrecht, 1993), p. 303.
28.
L. H.
Coudert
,
J. Mol. Spectrosc.
160
,
225
(
1993
).
29.
S.
Chandra
and
A.
Sahu
,
Astron. Astrophys.
272
,
700
(
1993
).
30.
M.
Izuha
,
S.
Yamamoto
, and
S.
Saito
,
Spectrochim. Acta A
50
,
1371
(
1994
).
31.
R.
Fantoni
,
F.
Bijnen
,
N.
Djurić
, and
S.
Piccirillo
,
Appl. Phys. B
52
,
176
(
1991
).
32.
T. J.
Butenhoff
and
E. A.
Rohlfing
,
J. Chem. Phys.
95
,
1
(
1991
).
33.
S. C.
Ross
,
T. J.
Butenhoff
,
E. A.
Rohlfing
, and
C. M.
Rohlfing
,
J. Chem. Phys.
100
,
4110
(
1994
).
34.
P. R.
Bunker
and
B. M.
Landsberg
,
J. Mol. Spectrosc.
67
,
374
(
1977
);
P. R.
Bunker
,
Annu. Rev. Phys. Chem.
34
,
59
(
1983
);
P.
Jensen
,
Comput. Phys. Rep.
1
,
1
(
1983
).
35.
F.
Pauzat
and
Y.
Ellinger
,
Chem. Phys. Lett.
112
,
519
(
1984
).
36.
J.
Oddershede
,
J. R.
Sabin
,
G. H. F.
Diercksen
, and
N. E.
Grüner
,
J. Chem. Phys.
83
,
1702
(
1985
).
37.
E.
Clementi
,
H.
Kistenmacher
, and
H.
Popkie
,
J. Chem. Phys.
58
,
2460
(
1973
).
38.
T.
Törring
,
J. P.
Bekooy
,
W. L.
Meerts
,
J.
Hoeft
,
E.
Tiemann
, and
A.
Dymanus
,
J. Chem. Phys.
73
,
4875
(
1980
).
39.
G.
Fitzgerald
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
85
,
1701
(
1986
).
40.
A. J.
Sadlej
,
G. H. F.
Diercksen
,
J.
Oddershede
, and
J. R.
Sabin
,
Chem. Phys.
122
,
297
(
1988
).
41.
P. W.
Deutsch
and
L. A.
Curtiss
,
Chem. Phys. Lett.
226
,
387
(
1994
).
42.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
43.
L. A.
Curtiss
,
J. E.
Carpenter
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
96
,
9030
(
1992
);
L. A.
Curtiss
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
1293
(
1993
).,
J. Chem. Phys.
44.
S.
Arulmozhiraja
and
P.
Kolandaivel
,
J. Mol. Struct. (Theochem)
334
,
71
(
1995
).
45.
R. S.
Grev
and
H. F.
Schaefer
,
J. Am. Chem. Soc.
111
,
5687
(
1989
).
46.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
47.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
48.
T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaefer (Plenum, New York, 1977), Vol. 3, p. 24.
49.
E.
Magnusson
,
J. Comput. Chem.
14
,
54
(
1993
).
50.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
51.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
52.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
53.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
54.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley-Interscience, New York, 1986).
55.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, 1st edition, revised (McGraw-Hill, New York, 1989).
56.
B. O. Roos, in Ab Initio Methods in Quantum Chemistry, edited by K. P. Lawley (Wiley, New York, 1987), p. 399.
57.
C.
Mo/ller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
58.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem. Symp.
10
,
1
(
1976
).
59.
R.
Krishnan
and
J. A.
Pople
,
Int. J. Quantum Chem.
14
,
91
(
1978
).
60.
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
61.
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
, and
M.
Head-Gordon
,
J. Phys. Chem.
94
,
5579
(
1990
).
62.
I. Shavitt, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3, p. 189.
63.
B. R.
Brooks
and
H. F.
Schaefer
,
J. Chem. Phys.
70
,
5391
(
1979
).
64.
P.
Saxe
,
D. J.
Fox
,
H. F.
Schaefer
, and
N. C.
Handy
,
J. Chem. Phys.
77
,
5584
(
1982
).
65.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
66.
G. D.
Purvis
III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
67.
J. Paldus, in New Horizons of Quantum Chemistry, edited by P.-O. Löwdin and B. Pullmann (Reidel, Dordrecht, 1983), p. 31.
68.
R. J. Bartlett, C. E. Dykstra, and J. Paldus, in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, edited by C. E. Dykstra (Reidel, Dordrecht, 1984), p. 127.
69.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
86
,
2881
(
1987
).
70.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
71.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
72.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
73.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
74.
T. J.
Lee
,
R.
Kobayashi
,
N. C.
Handy
, and
R. D.
Amos
,
J. Chem. Phys.
96
,
8931
(
1992
).
75.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
76.
C. L. Janssen, E. T. Seidl, G. E. Scuseria, T. P. Hamilton, Y. Yamaguchi, R. B. Remington, Y. Xie, G. Vacek, C. D. Sherrill, T. D. Crawford, J. T. Fermann, W. D. Allen, B. R. Brooks, G. B. Fitzgerald, D. J. Fox, J. F. Gaw, N. C. Handy, W. D. Laidig, T. J. Lee, R. M. Pitzer, J. E. Rice, P. Saxe, A. C. Scheiner, and H. F. Schaefer, PSI 2.0.8, PSITECH Inc., Watkinsville, GA, 1994.
77.
M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN 92, Revision A, Gaussian, Inc., Pittsburgh, PA, 1992.
78.
M. Dupuis, D. Spangler, and J. J. Wendolowski;
modified by
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
J. H.
Jensen
,
S.
Koseki
,
M. S.
Gordon
,
K. A.
Nguyen
,
T. L.
Windus
, and
S. T.
Elbert
,
QCPE Bull.
10
,
52
(
1990
).
79.
J. F.
Gaw
and
N. C.
Handy
,
Annu. Rept. R. Soc. Chem. C
81
,
291
(
1984
).
80.
P. Jo/rgensen and J. Simons, Geometrical Derivatives of Energy Surfaces and Molecular Properties (Reidel, Dordrecht, 1986).
81.
H. F.
Schaefer
and
Y.
Yamaguchi
,
J. Mol. Struct. (Theochem)
135
,
369
(
1986
).
82.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
5361
(
1987
).
83.
G. E.
Scuseria
,
J. Chem. Phys.
94
,
442
(
1991
).
84.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
M. A.
Vincent
,
J. F.
Gaw
, and
H. F.
Schaefer
,
Chem. Phys.
72
,
131
(
1982
).
85.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
D. J.
Fox
,
M. A.
Vincent
, and
H. F.
Schaefer
,
J. Mol. Struct. (Theochem)
103
,
183
(
1983
).
86.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. D.
Simandiras
,
Chem. Phys. Lett.
120
,
151
(
1985
).
87.
E. D.
Simandiras
,
N. C.
Handy
, and
R. D.
Amos
,
Chem. Phys. Lett.
133
,
324
(
1987
).
88.
The basic numerical differentiation formulas of various orders are given by A. G. Császár, in “Anharmonic molecular force fields,“ Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollmann, and H. F. Schaefer III (Wiley, Chichester, 1997). The finite-difference schemes were implemented here with INTDIF, a general program for the numerical evaluation of force fields of various orders, written by Wesley D. Allen.
89.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem. Symp.
23
,
199
(
1989
).
90.
N. C.
Handy
,
P. J.
Knowles
, and
K.
Somasundram
,
Theor. Chim. Acta
68
,
87
(
1985
).
91.
R. J.
Bartlett
and
I.
Shavitt
,
Chem. Phys. Lett.
50
,
190
(
1977
).
92.
W. D.
Laidig
,
G.
Fitzgerald
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
113
,
151
(
1985
).
93.
JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data 14, Supp. No. 1 (1985).
94.
A. L. L.
East
and
W. D.
Allen
,
J. Chem. Phys.
99
,
4638
(
1993
).
95.
W. D. Allen, A. L. L. East, and A. G. Császár, in Structures and Conformations of Non-Rigid Molecules, edited by J. Laane, M. Dakkouri, B. van der Veken, and H. Oberhammer (Kluwer, Dordrecht, 1993), p. 343.
96.
N. L.
Allinger
,
J. T.
Fermann
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
106
,
5143
(
1997
).
97.
B. D.
Wladkowski
,
W. D.
Allen
, and
J. I.
Brauman
,
J. Phys. Chem.
98
,
13532
(
1994
).
98.
S. J.
Klippenstein
,
A. L. L.
East
, and
W. D.
Allen
,
J. Chem. Phys.
105
,
118
(
1996
).
99.
UHF-based results are used here because restricted-orbital (RHF) capabilities for BD(TQ) computations on open-shell species have yet to be developed. This choice is justified by a striking level of agreement between RHF- vs UHF-orbital high-order correlated predictions of ΔEe for these reactions. For example, the cc-pVDZ RCCSD(T) and UCCSD(T) results for ΔEe(2) are −133.30 and −133.16 kcal mol−1, respectively.
100.
I. M. Mills, in Molecular Spectroscopy: Modern Research, edited by K. N. Rao, and C. W. Mathews (Academic, New York, 1972), Vol. 1, p. 115;
D. Papoušek, and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982);
D. A.
Clabo
, Jr.
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
Chem. Phys.
123
,
187
(
1988
).
101.
The size of this defect is surely a consequence of the limited applicability of a perturbation-theory analysis in treating the ν3 vibration. In this regard it is noteworthy that the effective empirical parameters α3B = 0.005 57 and α3c = 0.007 64 cm−1 (Refs. 26, 27) are considerably smaller than the corresponding constants in Table X.
102.
To estimate the effect of core correlation on the bond distances of SiC2, geometry optimizations were performed for the lowest singlet state of C2(1g+) and SiC(1+) with the CCSD(T) method using a completely uncontracted cc-pVTZ primitive basis augmented with a tight (1p,1d,1f) shell, the exponents of which were obtained by multiplying by 3.0 the largest exponent of that particular angular momentum in the original basis and rounding to the nearest half-integer. This basis is similar to those constructed by Martin and Taylor (Refs. 103, 104) for studying the effects of core correlation. The equilibrium bond distances obtained with frozen core orbitals were 1.2451 Å for C2 and 1.8358 Å for SiC, and the corresponding distances were 1.2420 and 1.8314 Å when all electrons were correlated. The inclusion of core correlation thus shortens the C-C and Si-C bonds by 0.0031 and 0.0044 Å, respectively.
103.
J. M. L.
Martin
,
Chem. Phys. Lett.
242
,
343
(
1995
).
104.
J. M. L.
Martin
and
P. R.
Taylor
,
Chem. Phys. Lett.
225
,
473
(
1994
).
105.
A. G.
Császár
and
W. D.
Allen
,
J. Chem. Phys.
104
,
2746
(
1996
).
106.
C. W.
Bauschlicher
, Jr.
and
H.
Partridge
,
J. Chem. Phys.
100
,
4329
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.