Nuclear magnetic shielding tensors computed by the gauge including atomic orbital (GIAO) method in the Hartree–Fock self-consistent-field (HF-SCF) framework are partitioned into magnetic contributions from chemical bonds and lone pairs by means of natural chemical shielding (NCS) analysis, an extension of natural bond orbital (NBO) analysis. NCS analysis complements the description provided by alternative localized orbital methods by directly calculating chemical shieldings due to delocalized features in the electronic structure, such as bond conjugation and hyperconjugation. Examples of NCS tensor decomposition are reported for CH4, CO, and H2CO, for which a graphical mnemonic due to Cornwell is used to illustrate the effect of hyperconjugative delocalization on the carbon shielding.

1.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
);
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
);
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
); ,
J. Chem. Phys.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
83
,
1736
(
1985
).,
J. Chem. Phys.
2.
F.
London
,
J. Phys. (Paris)
8
,
397
(
1937
).
3.
R.
Ditchfield
,
Mol. Phys.
27
,
789
(
1974
).
4.
H.
Hameka
,
Mol. Phys.
1
,
203
(
1958
).
5.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
6.
P. Pulay, J. F. Hinton, and K. Wolinski, in Nuclear Magnetic Shieldings and Molecular Structure, edited by J. A. Tossel, NATO ASI Series C, Vol. 386 (Kluwer, Boston, 1993).
7.
K.
Ruud
,
T.
Helgaker
,
R.
Kobayashi
,
P.
Jo/rgensen
,
K. L.
Bak
, and
H. J.
Aa. Jensen
,
J. Chem. Phys.
100
,
8178
(
1994
).
8.
M.
Jaszunski
,
S.
Szymanski
,
O.
Christiansen
,
P.
Jo/rgensen
,
T.
Helgaker
, and
K.
Ruud
,
Chem. Phys. Lett.
234
,
144
(
1995
).
9.
J.
Gauss
,
Ber. Bunsenges. Phys. Chem.
99
,
1001
(
1995
).
10.
H.
Fukui
,
T.
Baba
,
H.
Matsuda
, and
K.
Mirura
,
J. Chem. Phys.
100
,
6608
(
1994
).
11.
J.
Gauss
,
J. Chem. Phys.
99
,
3629
(
1993
).
12.
Y.
Ruiz-Moralez
,
G.
Schreckenbach
, and
T.
Ziegler
,
J. Phys. Chem.
100
,
3359
(
1996
).
13.
G.
Rauhut
,
S.
Puryear
,
K.
Wolinski
, and
P.
Pulay
,
J. Phys. Chem.
100
,
6310
(
1996
).
14.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
104
,
2574
(
1996
).
15.
W. Kutzelnigg, U. Fleischer, and M. Schindler, in NMR Basic Principles and Progress, edited by P. Diehl, E. Fluck, H. Gunther, R. Kosfeld, and J. Seelig (Springer, New York, 1991), Vol. 23, and references cited therein.
16.
W.
Kutzelnigg
,
Isr. J. Chem.
19
,
193
(
1980
).
17.
M.
Schindler
and
W.
Kutzelnigg
,
J. Chem. Phys.
76
,
1919
(
1982
).
18.
M.
Schindler
and
W.
Kutzelnigg
,
J. Am. Chem. Soc.
105
,
1360
(
1983
).
19.
M.
Schindler
and
W.
Kutzelnigg
,
Mol. Phys.
48
,
781
(
1983
).
20.
W. Kutzelnigg, in Nuclear Magnetic Shieldings and Molecular Structure, edited by J. A. Tossel, NATO ASI Series C, Vol. 386 (Kluwer, Boston, 1993).
21.
A. E.
Hansen
and
T. D.
Bouman
,
J. Chem. Phys.
82
,
5035
(
1985
).
22.
A. E.
Hansen
and
T. D.
Bouman
,
J. Chem. Phys.
76
,
3552
(
1989
).
23.
A. E. Hansen and T. D. Bouman, in Nuclear Magnetic Shieldings and Molecular Structure, edited by J. A. Tossel, NATO ASI Series C, Vol. 386 (Kluwer, Boston, 1993).
24.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
25.
C. J.
Jameson
,
Nucl. Magn. Reson.
24
,
44
(
1995
), and previous members of this series.
26.
B.
Shoulders
and
S. C.
Welch
,
J. Chem. Educ.
64
,
915
(
1987
).
27.
E. Pretsch, J. Seibl, W. Simon, and T. Clerc, Tables of Spectral Data for Structure Determination of Organic Compounds (Springer, New York, 1989).
28.
M.
Barfield
,
J. Am. Chem. Soc.
117
,
2862
(
1995
).
29.
R.
Born
and
H. W.
Speiss
,
Macromolecules
28
,
7785
(
1995
).
30.
G.
Wu
,
M. D.
Lumsden
,
G. C.
Ossenkamp
,
K.
Eichele
, and
R. E.
Wasylishen
,
J. Phys. Chem.
99
,
15806
(
1995
).
31.
C. W.
Kirby
,
M. D.
Lumsden
, and
R. E.
Wasylishen
,
Can. J. Chem.
73
,
604
(
1995
).
32.
U.
Fleisher
,
W.
Kutzelnigg
,
P.
Lazzeretti
, and
V.
Mühlenkamp
,
J. Am. Chem. Soc.
116
,
5298
(
1994
).
33.
G.
Grossmann
,
H.
Beckmann
,
O.
Rademacher
,
K.
Kruger
, and
J.
Ohms
,
J. Chem. Soc. Dalton Trans. 2
17
,
2797
(
1995
).
34.
S.
Berger
,
W.
Bock
,
G.
Frenking
,
V.
Jonas
and
F.
Muller
,
J. Am. Chem. Soc.
117
,
3820
(
1995
).
35.
M.
Buhl
,
U.
Thiel
,
U.
Fleisher
, and
W.
Kutzelnigg
,
J. Phys. Chem.
99
,
4000
(
1995
).
36.
E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO 4.0 (Theoretical Chemistry Institute, University of Wisconsin-Madison, Wisconsin, 1994).
37.
C. D.
Cornwell
,
J. Chem. Phys.
44
,
874
(
1966
).
38.
We use the names “unperturbed” and “induced” in the spirit of the separation suggested by C. D. Cornwell, who discusses similar, early work in Ref. 37.
39.
(a)
N. F.
Ramsey
,
Phys. Rev.
78
,
699
(
1950
);
(b)
N. F.
Ramsey
,
86
,
253
(
1952
).,
Phys. Rev.
40.
We have used the GIAO implementation of the TEXAS 93 program system from P. Pulay at the University of Arkansas.
41.
S. Huzinaga, Approximate Atomic Functions, I. (University of Alberta Press, Canada, 1971).
42.
Basis functions were formed from uncontracted Huzinaga (Ref. 41) sets. For CH4, the carbon basis is the 11s7p basis of Huzinaga contracted to 8s6p with two d-polarization functions ηd = (2.0,0.5); for hydrogen the Huzinaga 6s basis is contracted to 5s with two p-polarization functions ηp = (1.2,0.3). For H2CO, the oxygen basis is the 11s7p Huzinaga set contracted to 8s6p with two d-polarization functions ηd = (2.0,0.5); the carbon basis is the 11s7p Huzinaga set contracted to 8s6p with two d-polarization functions ηd = (1.0,0.3); the hydrogen basis is the Huzinaga 5s set contracted to 4s with two p-polarizaton functions ηp = (0.6,0.1). For CO, the Huzinaga 11s7p set is contracted to 7s7p for both C and O, with d-polarization functions ηd = (4.6,1.2,0.3) for O and ηd =(2.8,0.72,0.18) for C.
43.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).
44.
G.
Tarrago
,
M.
Dang-Nhu
, and
G.
Poussigue
,
J. Mol. Spectrosc.
49
,
322
(
1974
).
45.
K.
Takagi
and
T.
Oka
,
J. Phys. Soc. Jpn.
18
,
1174
(
1963
).
46.
W. T.
Raynes
,
R.
McVay
, and
J.
Wright
,
J. Chem. Soc. Faraday. Trans. 2
85
,
759
(
1989
).
47.
W. T.
Raynes
,
Nucl. Magn. Resor.
7
,
1
(
1977
).
48.
There is preliminary evidence that this NBO contribution is transferable to methyl isocyanide, CH3NC, which has the nσ carbon lone pair NBO oriented along the C axis. Although the full shielding tensor for CH3NC is not reported in this work, we have calculated the carbon lone pair NBO contribution to σzz(C) (the tensor component along the symmetry axis) at the 63‐11G** level (using the optimized geometry) and find it to be 23.6 ppm, only 0.9 ppm less than in CO. While the basis set level used for this calculation is not the same, we present this comparison because this orbital contribution is due only to the “unperturbed” shielding (since the carbon lone pair orbital does not exhibit orbital angular momentum about the symmetry axis), which is very near its basis set limit.
49.
For the same geometry, lowering the basis set level for the CO calculation to 6-311G* increases the non-Lewis contribution to σxx(C) by only ∼2 ppm (to −6.2 ppm) while the total value of σxx(C) is increased by 39 ppm (to −131.6 ppm). Clearly, the change in the basis set quality has the most effect on the Lewis contributions. The improved agreement with the experimental value at this level is only a artifact; near the basis set limit, the “induced” term of the tensor tends to be overestimated in SCF calculations (Ref. 14).
50.
A. K.
Jameson
and
C. J.
Jameson
,
Chem. Phys. Lett.
134
,
461
(
1987
);
C. J.
Jameson
,
Nucl. Magn. Reson.
19
,
1
(
1990
), and references cited therein.
51.
C. J.
Jameson
,
Nucl. Magn. Reson.
18
,
1
(
1989
).
52.
T. D.
Bouman
,
A. E.
Hansen
,
B.
Voigt
, and
S.
Rettrup
,
Int. J. Quantum Chem.
23
,
595
(
1983
).
53.
J. B. Grutzner, Chemical Shift Theory. Orbital Symmetry and Charge Effects on Chemical Shifts, in Recent Advances in Organic NMR Spectroscopy, edited by J. B. Lambert and R. Rittner (Norell, Landisville, New Jersey, 1987).
54.
R. S. Drago, Physical Methods for Chemists, 2nd ed. (Harcourt Brace Jovaovich, New York, 1992).
55.
J.
Kempf
,
H. W.
Speiss
,
U.
Haeberlen
, and
H.
Zimmermann
,
Chem. Phys.
4
,
269
(
1974
).
56.
See, for example,
W. H.
de Jeu
,
Mol. Phys.
18
,
31
(
1970
);
H.
Dahn
,
P.
Péchy
, and
H. J.
Bestmann
,
J. Chem Soc. Perkin Trans. 2
1993
,
1497
.
57.
F. A. L.
Anet
and
D. J.
O'Leary
,
Concepts Magn. Reson.
3
,
193
(
1991
).
58.
R. D.
Amos
,
Chem. Phys. Lett.
68
,
536
(
1979
).
59.
W. L.
Meerts
,
F. H.
de Leeuw
, and
A.
Dymanus
,
Chem. Phys.
22
,
319
(
1977
).
60.
M. A.
Frerking
and
W. D.
Langer
,
J. Chem. Phys.
74
,
6990
(
1981
).
61.
S. G.
Kukolich
,
J. Am. Chem. Soc.
97
,
5704
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.