Quasielastic light scattering (QLS) in the frequency interval 100–1000 GHz is measured in some polymers: polycarbonate, polybutadiene, polystyrene, and poly(methyl methacrylate). To describe the spectra, a model of the fast picosecond relaxation processes responsible for the QLS, which is based on the damping of the boson peak vibrations by the dynamic hole volume fluctuations, is used. Within the frame of the model, the intensity of the fast relaxation process is proportional to the fractional dynamic hole volume (which above the glass transition temperature Tg is known as the fractional free volume). The hole volumes can be measured using the positron annihilation lifetime spectroscopy (PALS). The comparison of the literature PALS data in the four polymers with the QLS shows an apparent correlation between the relaxation strength and the fractional dynamic hole volume in good agreement with the predictions of the model.

1.
G.
Wintelring
,
Phys. Rev. B
12
,
2432
(
1975
).
2.
R.
Nemanich
,
Phys. Rev. B
16
,
1655
(
1977
).
3.
J. Jäckle, in Amorphous Solids: Low-Temperature Properties, edited by W. A. Phillips (Springer, New York, 1981).
4.
H. Z.
Cummins
,
G.
Li
,
W. M.
Du
, and
J.
Hernandez
,
Phys. A
204
,
169
(
1994
).
5.
V. Z.
Gochiyaev
,
V. K.
Malinovsky
,
V. N.
Novikov
, and
A. P.
Sokolov
,
Philos, Mag. B
63
,
777
(
1991
).
6.
A. P.
Sokolov
,
A.
Kisliuk
,
D.
Quitmann
,
A.
Kudlik
, and
E.
Rössler
,
J. Non-Cryst. Solids
172–174
,
1384
(
1994
).
7.
A.
Brodin
,
A.
Fontana
,
L.
Börjesson
,
G.
Carini
, and
L. M.
Torell
,
Phys. Rev. Lett.
73
,
2067
(
1994
).
8.
A.
Brodin
,
D.
Engberg
,
L. M.
Torell
,
L.
Börjesson
, and
A. P.
Sokolov
,
Phys. Rev. B
53
,
11
,
511
(
1996
).
9.
A. P.
Sokolov
,
W.
Steffen
, and
E.
Rössler
,
Phys. Rev. B
52
,
5105
(
1995
).
10.
N. V.
Surovtsev
,
E.
Duval
,
A.
Mermet
, and
V. N.
Novikov
,
J. Phys. Cond. Matt.
7
,
8077
(
1995
).
11.
S.
Kojima
and
V. N.
Novikov
,
Phys. Rev. B
54
,
222
(
1996
).
12.
A. P.
Sokolov
,
Physica B
219–220
,
251
(
1996
).
13.
A.
Patkowskii
,
W.
Steffen
,
G.
Meier
, and
E. W.
Fischer
,
J. Non-Cryst. Solids
172–174
,
52
(
1994
).
14.
M. J.
Lebon
,
C.
Dreyfus
,
G.
Li
,
A.
Aouadi
,
H. Z.
Cummins
, and
R. M.
Pick
,
Phys. Rev. E
51
,
4537
(
1995
).
15.
G.
Carini
,
G.
D’Angelo
,
G.
Tripodo
,
A.
Fontana
,
A.
Leonardi
,
G. A.
Saunders
, and
A.
Brodin
,
Phys. Rev. B
52
,
9342
(
1995
).
16.
S.
Kojima
,
Phys. Rev. B
47
,
2924
(
1993
).
17.
U.
Buchenau
et al.,
Phys. Rev. Lett.
60
,
1318
(
1988
).
18.
B.
Frick
,
B.
Farago
, and
D.
Richter
,
Phys. Rev. Lett.
64
,
2921
(
1990
).
19.
U.
Buchenau
,
C.
Schönfeld
,
D.
Richter
,
T.
Kanaya
,
K.
Kaji
, and
R.
Wehrmann
,
Phys. Rev. Lett.
73
,
2344
(
1994
).
20.
R.
Zorn
,
A.
Arbe
,
J.
Colmenero
,
B.
Frick
,
D.
Richter
, and
U.
Buchenau
,
Phys. Rev. E
52
,
781
(
1995
).
21.
J.
Wuttke
,
W.
Petry
,
G.
Goddens
, and
F.
Fujara
,
Phys. Rev. E
52
,
4026
(
1995
).
22.
P.
Lunkenheimer
,
A.
Pimenov
,
B.
Schiener
,
R.
Böhmer
, and
A.
Loidl
,
Europhys. Lett.
33
,
611
(
1996
).
23.
W.
Götze
and
L.
Sjögren
,
Rep. Prog. Phys.
55
,
241
(
1992
).
24.
C. A.
Angell
,
J. Phys. Chem. Solids
49
,
863
(
1988
).
25.
G.
Li
,
H. E.
King
, Jr.
,
W. F.
Oliver
,
C. A.
Herbst
, and
H. Z.
Cummins
,
Phys. Rev. Lett.
74
,
2280
(
1995
).
26.
V. K.
Malinovsky
,
V. N.
Novikov
,
P. P.
Parshin
,
A. P.
Sokolov
, and
M. G.
Zemlyanov
,
Europhys. Lett.
11
,
43
(
1992
).
27.
N.
Theodorakopoulos
and
J.
Jäckle
,
Phys. Rev. B
14
,
2637
(
1976
).
28.
U.
Buchenau
,
Yu. M.
Galperin
,
V. L.
Gurevich
, and
H. R.
Schober
,
Phys. Rev. B
43
,
5039
(
1991
).
29.
V. L.
Gurevich
,
D. A.
Parshin
,
J.
Pelous
, and
H. R.
Shober
,
Phys. Rev. B
48
,
16318
(
1994
).
30.
A. P.
Sokolov
,
U.
Buchenau
,
W.
Steffen
,
B.
Frick
, and
A.
Wischnevski
,
Phys. Rev. B
52
,
R9815
(
1995
).
31.
J. S.
Lannin
,
Phys. Rev. B
15
,
3683
(
1977
).
32.
T.
Achibat
,
A.
Boukenter
, and
E.
Duval
,
J. Chem. Phys.
99
,
2046
(
1993
).
33.
A. P.
Sokolov
,
A.
Kisliuk
,
D.
Quitmann
, and
E.
Duval
,
Phys. Rev. B
48
,
7692
(
1993
).
34.
M.
Krüger
,
M.
Soltwisch
,
I.
Petscherizin
, and
D.
Quitmann
,
J. Chem. Phys.
96
,
7352
(
1992
).
35.
R.
Shucker
and
R. W.
Gammon
,
Phys. Rev.
25
,
222
(
1970
).
36.
E.
Duval
,
A.
Boukenter
, and
T.
Achibat
,
J. Phys. Cond. Matt.
2
,
10
,
227
(
1993
).
37.
A. J.
Martin
and
W.
Brenig
,
Phys. Status Solidi
64
,
163
(
1974
).
38.
V. K.
Malinovsky
and
A. P.
Sokolov
,
Solid State Commun.
57
,
757
(
1986
).
39.
A. K.
Hassan
,
L.
Börjesson
, and
L. M.
Torell
,
J. Non-Cryst. Solids
172–174
,
154
(
1994
).
40.
J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980).
41.
A. P. Sokolov (unpublished).
42.
J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
43.
Polymer Handbook, edited by J. Brandrup and E. H. Immergut (Wiley, New York, 1989).
44.
G. D.
Patterson
,
J. Polym. Sci. Polym. Phys. Ed.
14
,
741
(
1976
).
45.
Encyclopedia of Polymer Science and Engineering (Wiley, New York, 1988), Vol. 1.
46.
J.
Krištiak
,
J.
Bartoš
,
K.
Krištiaková
,
O.
Sauša
, and
P.
Banduch
,
Phys. Rev. B
49
,
6601
(
1994
).
47.
L.
Xie
,
D. W.
Gildey
,
H. A.
Hristov
, and
A. F.
Yee
,
J. Polym. Sci. Polym. Phys. Ed.
33
,
77
(
1995
).
48.
J. E. Kluin, H. Moaddel, M. Y. Ruan, Z. Yu, A. M. Jamieson, R. Simha, and J. D. McGervey, in Structure-Property Relations in Polymers: Spectroscopy and Performance, edited by M. W. Urban and C. D. Crover (Am. Chem. Soc., Washington, DC, 1993).
49.
A.
Uedono
,
T.
Kawano
,
L.
Wei
,
S.
Tanigawa
,
M.
Ban
, and
M.
Kyoto
,
J. Phys. (Paris) Coll. C1,
5
,
199
(
1995
).
50.
O. A.
Hasan
,
M. C.
Boyce
,
X. S.
Li
, and
S.
Berko
,
J. Polym. Sci. Polym. Phys. Ed.
31
,
185
(
1993
).
51.
A. F. Yee et al., J. Polym. Sci. Polym. Phys. Ed (in press).
52.
C. L.
Wang
and
S. J.
Wang
,
Phys. Rev. B
51
,
8810
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.