The possibility of controlling surface photochemistry by the selective vibrational preparation of adsorbates with infrared (ir) laser pulses is investigated theoretically. In particular, the selective ir plus ultraviolet (uv) light-induced desorption of different isotopomeric neutral adsorbates from metal surfaces is studied with the help of nuclear density matrix theory. As a concrete example the system NH3/ND3/Cu(111) is chosen. In a first step of the “vibrationally mediated chemistry” advocated here, based on computed two-mode dipole functions and model potentials, optimal infrared laser pulses are designed to selectively excite the umbrella mode ν2 of either adsorbed NH3 or ND3. In a second step, an uv/visible photon enforces an electronic transition, leading, after ultrafast quenching, to desorption induced by electronic transitions (DIET). It is argued that despite strong dissipation, the proper vibrational preparation not only increases desorption yields substantially, but also allows for an almost complete separation of both isotopomers.

1.
P.
Brumer
and
M.
Shapiro
,
Annu. Rev. Phys. Chem.
43
,
257
(
1992
).
2.
D. J.
Tannor
and
S. A.
Rice
,
J. Chem. Phys.
83
,
5013
(
1985
);
D. J.
Tannor
and
S. A.
Rice
,
D. J.
Tannor
,
R.
Kosloff
, and
S. A.
Rice
,
J. Chem. Phys.
85
,
5805
(
1986
).,
J. Chem. Phys.
3.
S.
Shi
,
A.
Woody
, and
H.
Rabitz
,
J. Chem. Phys.
88
,
6870
(
1988
);
S.
Shi
,
A.
Woody
, and
H.
Rabitz
,
S. H.
Tersigni
,
P.
Gaspard
, and
S. A.
Rice
,
J. Chem. Phys.
93
,
1670
(
1990
); ,
J. Chem. Phys.
W.
Jakubetz
,
J.
Manz
, and
H.-J.
Schreier
,
Chem. Phys. Lett.
165
,
100
(
1990
);
Y. J.
Yan
,
R. E.
Gillian
,
R. M.
Whitnell
,
K. R.
Wilson
, and
S.
Mukamel
,
J. Phys. Chem.
97
,
2320
(
1993
);
A.
Bartana
,
R.
Kosloff
, and
D. J.
Tannor
,
J. Chem. Phys.
99
,
196
(
1993
).
4.
V. S.
Letokhov
,
Science
180
,
63
(
1973
);
V.
Engel
and
R.
Schinke
,
J. Chem. Phys.
88
,
6831
(
1988
);
D. G.
Imre
and
J.
Zhang
,
Chem. Phys.
139
,
89
(
1989
);
F. F.
Crim
,
Science
249
,
1387
(
1990
);
C.
Daniel
,
R.
de Vivie-Riedle
,
M.-C.
Heitz
,
J.
Manz
, and
P.
Saalfrank
,
Int. J. Quantum Chem.
57
,
595
(
1996
).
5.
B.
Amstrup
and
N. E.
Henriksen
,
J. Chem. Phys.
97
,
8285
(
1992
);
B.
Amstrup
and
N. E.
Henriksen
,
M.
Shapiro
and
P.
Brumer
,
J. Chem. Phys.
98
,
201
(
1993
).,
J. Chem. Phys.
6.
T.
Baumert
,
V.
Engel
,
C.
Röttgermann
,
W. T.
Strunz
, and
G.
Gerber
,
Chem. Phys. Lett.
191
,
639
(
1992
);
E. D.
Potter
,
J. L.
Herek
,
S.
Pedersen
,
Q.
Liu
,
A. H.
Zewail
,
Nature (London)
355
,
66
(
1993
);
L.
Zhu
,
K.
Kleiman
,
X.
Li
,
S.-P.
Lu
,
K.
Trentelman
, and
R. J.
Gordon
,
Science
270
,
77
(
1995
);
U.
Marvet
and
M.
Dantus
,
Chem. Phys. Lett.
245
,
393
(
1995
).
7.
M.
Morin
,
N. J.
Levinos
, and
A. L.
Harris
,
J. Chem. Phys.
96
,
3950
(
1992
).
8.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
);
M.
Head-Gordon
and
J. C.
Tully
,
Phys. Rev. B
46
,
1853
(
1992
).
9.
P.
Guyot-Sionnest
,
P.
Dumas
,
Y. J.
Chabal
, and
G.
Higashi
,
Phys. Rev. Lett.
64
,
2156
(
1990
);
Y. J.
Chabal
,
J. Mol. Struct.
292
,
65
(
1993
).
10.
Y.-C.
Sun
,
H.
Gai
, and
G. A.
Voth
,
Chem. Phys.
205
,
11
(
1996
).
11.
X.-Y.
Zhu
and
J. M.
White
,
Phys. Rev. Lett.
68
,
3359
(
1992
);
X.-Y.
Zhu
,
M.
Wolf
,
T.
Huett
, and
J. M.
White
,
J. Chem. Phys.
97
,
5868
(
1992
);
X.-Y.
Zhu
,
M.
Wolf
,
T.
Huett
, and
J. M.
White
,
X.-Y.
Zhu
,
J. Chem. Phys.
98
,
3410
(
1993
).,
J. Chem. Phys.
12.
A. R.
Burns
,
D. R.
Jennison
,
E. B.
Stechel
, and
Y. S.
Li
,
Phys. Rev. Lett.
68
,
3359
(
1992
);
A. R.
Burns
,
E. B.
Stechel
,
D. R.
Jennison
, and
Y. S.
Li
,
J. Chem. Phys.
101
,
6318
(
1994
).
13.
T.
Hertel
,
M.
Wolf
, and
G.
Ertl
,
J. Chem. Phys.
102
,
3414
(
1995
).
14.
W.
Nessler
,
K.-H.
Bornscheuer
,
T.
Hertel
, and
E.
Hasselbrink
,
Chem. Phys.
205
,
205
(
1995
).
15.
K.-H.
Bornscheuer
,
M.
Binetti
,
W.
Nessler
,
E.
Hasselbrink
, and
P.
Saalfrank
,
Phys. Rev. Lett.
78
,
1174
(
1997
).
16.
H.
Guo
,
Chem. Phys. Lett.
240
,
393
(
1995
);
H.
Guo
and
T.
Seideman
,
J. Chem. Phys.
103
,
9062
(
1995
).
17.
P.
Saalfrank
,
S.
Holloway
, and
G. R.
Darling
,
J. Chem. Phys.
103
,
6720
(
1995
).
18.
E.
Hasselbrink
,
M.
Wolf
,
S.
Holloway
, and
P.
Saalfrank
,
Surf. Sci.
363
,
179
(
1996
).
19.
D.
Menzel
and
R.
Gomer
,
J. Chem. Phys.
41
,
3311
(
1964
);
P. A.
Redhead
,
Can. J. Phys.
42
,
886
(
1964
).
20.
P. R.
Antoniewicz
,
Phys. Rev. B
21
,
3811
(
1980
).
21.
P.
Saalfrank
and
T.
Klamroth
,
Ber. Bunsenges. Phys. Chem.
99
,
1347
(
1995
).
22.
G. K. Paramonov, in Femtosecond Chemistry, edited by J. Manz and L. Wöste (VCH, Weinheim, 1995), Chap. 23.
23.
M. V.
Korolkov
,
J.
Manz
, and
G. K.
Paramonov
,
J. Phys. Chem.
100
,
13927
(
1996
);
G. K.
Paramonov
and
M. V.
Korolkov
,
Phys. Rev. A
55
,
589
(
1997
).
24.
G. K. Paramonov and P. Saalfrank (unpublished).
25.
J. W.
Gadzuk
and
C. W.
Clark
,
J. Chem. Phys.
91
,
3174
(
1989
);
J. W.
Gadzuk
,
L. J.
Richter
,
S. A.
Buntin
,
D. S.
King
, and
R. R.
Cavanagh
,
Surf. Sci.
235
,
317
(
1990
);
J. W.
Gadzuk
,
Phys. Rev. B
44
,
13
(
1991
);
J. W.
Gadzuk
,
Surf. Sci.
342
,
345
(
1995
).
26.
P.
Saalfrank
,
R.
Baer
, and
R.
Kosloff
,
Chem. Phys. Lett.
230
,
463
(
1994
).
27.
P.
Saalfrank
and
R.
Kosloff
,
J. Chem. Phys.
105
,
2441
(
1996
).
28.
P.
Saalfrank
,
Chem. Phys.
211
,
267
(
1996
).
29.
O.
Kühn
and
V.
May
,
Chem. Phys.
208
,
117
(
1996
).
30.
J. A.
Misewich
,
T. F.
Heinz
, and
D. M.
Newns
,
Phys. Rev. Lett.
68
,
3737
(
1992
).
31.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
32.
General Atomic and Molecular Electronic Structure System GAMESS,
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
J. H.
Jensen
,
S.
Koseki
,
M. S.
Gordon
,
K. A.
Nguyen
,
T. L.
Windus
, and
S. T.
Elbert
,
QCPE Bull.
10
,
52
(
1990
).
33.
In Ref. 21, somewhat different matrix elements were estimated from a simplified model dipole function. Additionally, an error was made during their numerical evaluation. This did not lead to qualitative errors, but for instance the |0g〉→|12g matrix element for NH3 was too large.
34.
W.
Jakubetz
,
B.
Just
,
J.
Manz
, and
H.-J.
Schreier
,
J. Phys. Chem.
94
,
2294
(
1990
).
35.
M.
Holthaus
and
B.
Just
,
Phys. Rev. A
49
,
1950
(
1993
).
36.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
37.
V.
Gorini
and
A.
Kossakowski
,
J. Math. Phys.
17
,
821
(
1976
).
38.
M.
Berman
and
R.
Kosloff
,
Comput. Phys. Commun.
63
,
1
(
1991
);
M.
Berman
,
R.
Kosloff
, and
H.
Tal-Ezer
,
J. Phys. A
25
,
1283
(
1992
).
39.
L.
Pesce
and
P.
Saalfrank
,
Chem. Phys.
219
,
43
(
1997
).
40.
R.
Dum
,
P.
Zoller
, and
H.
Ritsch
,
Phys. Rev. A
45
,
4879
(
1992
);
K.
Mo/lmer
,
Y.
Castin
, and
J.
Dalibard
,
J. Opt. Soc. Am. B
10
,
524
(
1993
);
B.
Wolfseder und
and
W.
Domcke
,
Chem. Phys. Lett.
235
,
371
(
1995
).
41.
M. D.
Feit
,
J. J. A.
Fleck
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
42.
In Refs. 17 and 18 slightly shorter and larger lifetimes, respectively, were estimated. The small differences are due to a shorter total propagation time, a smaller grid, and a larger Δτ spacing in Ref. 17, or due to a smaller number of sampling points used in (4.4) (Ref. 18), respectively.
43.
L.
Liu
and
H.
Guo
,
Chem. Phys.
205
,
179
(
1996
).
44.
J. W. Gadzuk, in Femtosecond Chemistry, edited by J. Manz and L. Wöste (VCH, Weinheim, 1995), Chap. 20.
This content is only available via PDF.
You do not currently have access to this content.