A dynamic simulation of colloidal adsorption has been developed to probe the effects of colloidal interactions on the kinetics and extent of adsorption. The simulation accounts for diffusion by Brownian dynamics to a homogeneous planar adsorption surface from a region of constant chemical potential. A grand canonical Monte Carlo routine is used periodically to re-equilibrate this region. Particle motion in the plane of the surface is subject to either unrestricted diffusion or zero diffusion. Deryaguin-Landau-Verwey-Overbeek pair potentials are used to characterize both particle–particle and particle–surface interactions. The pair potential parameters were chosen to mimic (separately) polystyrene latex microspheres and small globular proteins, two classes of charged colloidal particles for which experimental adsorption data exist. The simulation qualitatively captures the variation in adsorptive capacity with ionic strength distinct to each system: fractional coverage increases for polystyrene latex adsorption but decreases for protein adsorption with increasing salt concentration. In the former, strong lateral repulsion between adsorbed particles appears to govern the extent of adsorption, whereas in the latter, the extent of adsorption is more strongly affected by the screening of the weak attraction between the particle and the surface. Excellent quantitative predictions for polystyrene latex adsorption with and without surface diffusion are obtained without adjustable parameters.

1.
D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications (VCH, New York, 1991), p. 3.
2.
M. Elimelech, J. Gregory, X. Jia, and R. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation (Butterworth-Heinemann, Oxford, 1995), p. 362.
3.
C. A.
Haynes
and
W.
Norde
,
Colloids Surf. B
2
,
517
(
1994
).
4.
Y. F. Missirlis and W. Lemm, Modern Aspects of Protein Adsorption on Biomaterials (Kluwer Academic, Boston, 1991).
5.
J. Janson and T. Petterson, in Preparative and Production Scale Chromatography, edited by G. Ganetsos and P. E. Barker (Marcel Dekker, New York, 1993), p. 564.
6.
J.
Feder
,
J. Theor. Biol.
87
,
237
(
1980
).
7.
J.
Feder
and
I.
Giaever
,
J. Colloid Interface Sci.
78
,
144
(
1980
).
8.
G.
Tarjus
,
P.
Schaaf
, and
J.
Talbot
,
J. Chem. Phys.
93
,
8352
(
1990
).
9.
R.
Muralidhar
and
J.
Talbot
,
AIChE. J.
39
,
1322
(
1993
).
10.
S. M.
Ricci
,
J.
Talbot
,
G.
Tarjus
, and
P.
Viot
,
J. Chem. Phys.
101
,
9164
(
1994
).
11.
A. P.
Thompson
and
E. D.
Glandt
,
J. Colloid Interface Sci.
146
,
63
(
1991
).
12.
A.
Elaissari
,
A.
Haouam
,
C.
Huguenard
, and
E.
Pefferkorn
,
J. Colloid Interface Sci.
149
,
68
(
1992
).
13.
R.
Ezzeddine
,
P.
Schaaf
,
J.-C.
Voegel
, and
B.
Senger
,
Phys. Rev. E
51
,
6286
(
1995
).
14.
Z.
Adamczyk
,
M.
Zembala
,
B.
Siwek
, and
P.
Warszynski
,
J. Colloid Interface Sci.
140
,
123
(
1990
).
15.
P.
Johnson
and
M.
Elimelech
,
Langmuir
11
,
801
(
1995
).
16.
C. A.
Johnson
and
A. M.
Lenhoff
,
J. Colloid Interface Sci.
179
,
587
(
1996
).
17.
M. R. Oberholzer, J. M. Stankovich, S. L. Carnie, D. Y. C. Chan, and A. M. Lenhoff, J. Colloid Interface Sci. (in press).
18.
B.
Senger
,
P.
Schaaf
,
F. J.
Balafuy
,
F. J. G.
Cuisinier
,
J.
Talbot
, and
J.-C.
Voegel
,
Proc. Natl. Acad. Sci. USA
91
,
3004
(
1994
).
19.
J.-S.
Wang
,
P.
Nielaba
, and
V.
Privman
,
Mod. Phys. Lett. B
7
,
189
(
1993
).
20.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
21.
E.
Dickinson
,
Chem. Soc. Rev.
14
,
421
(
1985
).
22.
Z.
Adamczyk
,
B.
Siwek
, and
M.
Zembala
,
Colloids Surf., A
76
,
115
(
1993
).
23.
G. E.
Norman
and
V. S.
Filinov
,
High Temp.
7
,
216
(
1969
).
24.
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University, New York, 1987), the GCMC routine was based on the FORTRAN code listed in F. 13, and F. 14.
25.
J.
Stankovich
and
S. L.
Carnie
,
Langmuir
12
,
1453
(
1996
).
26.
J. E.
Sader
,
J. Colloid Interface Sci.
188
,
508
(
1997
).
27.
H. C.
Hamaker
,
Physica (Amsterdam)
4
,
1058
(
1937
).
28.
R. J. Hunter, Foundations of Colloid Science, Vol. I (Oxford University Press, Oxford, 1986).
29.
C. M.
Roth
,
B. L.
Neal
, and
A. M.
Lenhoff
,
Biophys. J.
70
,
977
(
1996
).
30.
T.
Afshar-Rad
,
A. I.
Bailey
,
P. F.
Luckham
,
W.
MacNaughtan
, and
D.
Chapman
,
Biochim. Biophys. Acta
915
,
101
(
1987
).
31.
H.
Brenner
,
Chem. Eng. Sci.
16
,
242
(
1961
).
32.
T. E. Creighton, Proteins, 2nd ed. (Freeman, New York, 1993).
33.
C.
Tanford
and
R.
Roxby
,
Biochemistry
11
,
2192
(
1972
).
34.
J. N.
Israelachvili
and
G. E.
Adams
,
J. Chem. Soc. Faraday Trans.
74
,
975
(
1978
).
35.
D. Nicholson and N. G. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption (Academic, New York, 1982).
36.
P.
González-Mozuelos
and
M.
Medina-Noyola
,
J. Chem. Phys.
93
,
2109
(
1990
).
37.
P.
González-Mozuelos
and
M.
Medina-Noyola
,
J. Chem. Phys.
94
,
1480
(
1991
).
38.
P.
González-Mozuelos
,
M.
Medina-Noyola
,
B.
D’Aguanno
,
J. M.
Méndez-Alcaraz
, and
R.
Klein
,
J. Chem. Phys.
95
,
2006
(
1991
).
39.
P.
González-Mozuelos
,
J.
Alejandre
, and
M.
Medina-Noyola
,
J. Chem. Phys.
97
,
8712
(
1992
).
40.
R. H.
Swendsen
,
Phys. Rev. A
24
,
504
(
1981
).
41.
P.
Schaaf
,
A.
Johner
, and
J.
Talbot
,
Phys. Rev. Lett.
66
,
1603
(
1991
).
42.
H.
Löwen
,
J. Phys. : Condens. Matter
4
,
10105
(
1992
).
43.
S. Yamamoto, K. Nakanishi, and R. Matsuno, Ion Exchange Chromatography of Proteins (Marcel Dekker, Inc., New York, 1988).
44.
E.
Dickinson
and
E. G.
Pelan
,
Mol. Phys.
74
,
1115
(
1991
).
45.
T.
Arai
and
W.
Norde
,
Colloids Surface
51
,
1
(
1990
).
46.
C. T.
Shibata
and
A. M.
Lenhoff
,
J. Colloid Interface Sci.
148
,
469
(
1992
).
47.
J. D.
Andrade
and
V.
Hlady
,
Adv. Polym. Sci.
79
,
1
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.