We present a new self-consistent field approach which, given a large “secondary” basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small “primary” basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO’s) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO’s derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO’s are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO’s are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

1.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
);
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
253
,
268
(
1996
).,
Chem. Phys. Lett.
2.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Science
271
,
51
(
1996
).These authors have implemented a version of the CFMM they term the Gaussian FMM (GFMM), and an extension called the Gaussian Very Fast Multipole Method (GvFMM).
3.
S.
Saebo/
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
4.
J.
Almlöf
,
Chem. Phys. Lett.
176
,
319
(
1991
).
5.
M.
Haser
,
Theor. Chim. Acta
87
,
147
(
1993
).
6.
P. E. Maslen and M. Head-Gordon, Chem. Phys. Lett. (submitted).
7.
R. S.
Mulliken
,
J. Chem. Phys.
36
,
3428
(
1962
).
8.
E. R.
Davidson
,
J. Chem. Phys.
46
,
3320
(
1967
).
9.
K. R.
Roby
,
Mol. Phys.
27
,
81
(
1974
).
10.
R.
Heinzmann
and
R.
Ahlrichs
,
Theor. Chim. Acta
42
,
33
(
1976
).
11.
C.
Ehrhardt
and
R.
Ahlrichs
,
Theor. Chim. Acta
68
,
231
(
1985
).
12.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
13.
I.
Mayer
,
Chem. Phys. Lett.
242
,
499
(
1995
).
14.
I.
Mayer
,
J. Phys. Chem.
100
,
6249
(
1996
).
15.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
41
(
1982
).
16.
K.
Ruedenberg
,
M. W.
Schmidt
, and
M. M.
Gilbert
,
Chem. Phys.
71
,
51
(
1982
).
17.
A. C.
Hurley
,
Proc. R. Soc. London, Ser. A
226
,
170
(
1954
).
18.
T.
Helgaker
and
J.
Almlöf
,
J. Chem. Phys.
89
,
4889
(
1989
).
19.
G.
Del Re
,
Adv. Quantum Chem.
8
,
95
(
1974
).
20.
W. H.
Adams
,
J. Chem. Phys.
34
,
89
(
1961
);
W. H.
Adams
,
37
,
2009
(
1962
).
21.
P. W.
Anderson
,
Phys. Rev. Lett.
21
,
13
(
1968
).
22.
J. D.
Weeks
,
P. W.
Anderson
, and
A. G. H.
Davidson
,
J. Chem. Phys.
58
,
1388
(
1973
).
23.
W. H.
Adams
,
Chem. Phys. Lett.
12
,
295
(
1971
).
24.
G.
Galli
and
M.
Parinello
,
Phys. Rev. Lett.
69
,
3547
(
1992
).
25.
F.
Mauri
,
G.
Galli
, and
R.
Car
,
Phys. Rev. B
47
,
9973
(
1993
).
26.
E. B.
Stechel
,
A. R.
Williams
, and
P. J.
Feibelman
,
Phys. Rev. B
49
,
10088
(
1994
).
27.
J.
Kim
,
F.
Mauri
, and
G.
Galli
,
Phys. Rev. B
52
,
1640
(
1995
).
28.
X.-P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
29.
R. W.
Nunes
and
D.
Vanderbilt
,
Phys. Rev. B
50
,
17611
(
1994
).
30.
J. M.
Millam
and
G. E.
Scuseria
,
J. Chem. Phys.
106
,
5569
(
1997
).
31.
C.
Ochsenfeld
and
M.
Head-Gordon
,
Chem. Phys. Lett.
270
,
399
(
1997
).
32.
M. S. Lee and M. Head-Gordn (work in progress).
33.
J. L. Synge and A. Schild, Tensor Calculus (Dover, New York, 1978).
34.
C. A. White, P. Maslen, M. S. Lee, and M. Head-Gordon, Chem. Phys. Lett. (in press).
35.
M.
Head-Gordon
and
J. A.
Pople
,
J. Phys. Chem.
92
,
3063
(
1988
).
36.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
37.
O. Axelsson, Iterative Solution Methods (Cambridge, New York, 1994).
38.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
39.
B. G. Johnson, P. M. W. Gill, M. Head-Gordon, C. A. White, J. Baker, D. R. Maurice, M. Challacombe, E. Schwegler, T. R. Adams, J. Kong, M. Oumi, C. Ochsenfeld, N. Ishikawa, R. D. Adamson, J. P. Dombroski, R. L. Graham, and E. D. Fleischmann, Q-CHEM, Version 1.0 Rev A, Q-Chem, Inc., Pittsburgh, PA, 1997.
40.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989)
41.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
42.
M.
Head-Gordon
and
J. A.
Pople
,
J. Phys. Chem.
97
,
1147
(
1993
).
43.
A. E.
Reed
and
F.
Weinhold
,
J. Am. Chem. Soc.
108
,
3586
(
1986
).
44.
C. Y. Ng, in The Structure, Energetics and Dynamics of Organic Ions, edited by T. Baer, C. Y. Ng, and I. Powis (Wiley, New York, 1996).
45.
O.
Sinanoglu
,
Theor. Chim. Acta
65
,
233
(
1984
).
46.
E.
Artacho
and
L.
Milans del Bosch
,
Phys. Rev. A
43
,
5770
(
1991
).
47.
M. Head-Gordon, P. E. Maslen, and C. A. White, J. Chem. Phys. (submitted).
This content is only available via PDF.
You do not currently have access to this content.