This paper presents an exact quantum state-to-state dynamics calculation for the prototype insertion reaction O(1D)+H2→OH+H with the total angular momentum J=0. By extending the Peng et al. previous study of total reaction probabilities [Chem. Phys. Lett. 248, 37 (1996)], the state-to-state reaction probabilities from the initial ground rovibrational state (v=j=0) have been obtained for 500 evenly spaced energy points covering the total energy from 0.3 to 0.8 eV. An individual state-to-state reaction probability is heavily oscillatory as a function of the collision energy, while the total reaction probability remains flat in the high-energy region, which implies that the reaction is predominantly direct. In the low-energy region, several possible resonance energies have been identified and compared to the reduced-dimension counterpart. The product-state distribution clearly demonstrates an inverted rotational distribution in which highly excited rotational states are excessively populated. The vibrational distribution is also in good agreement with the three-dimensional trajectory calculations as well as the reduced-dimension calculation.

1.
H.
Xu
,
N. E.
Shafer-Ray
,
F.
Merkt
,
D. J.
Hughes
,
M.
Springer
,
R. P.
Tuckett
, and
R. N.
Zare
,
J. Chem. Phys.
103
,
5157
(
1995
).
2.
J. Z. H.
Zhang
and
W. H.
Miller
,
J. Chem. Phys.
91
,
1528
(
1989
).
3.
J. F.
Castillo
,
D. E.
Manolopoloulos
,
K.
Stark
, and
H. J.
Werner
,
J. Chem. Phys.
104
,
6531
(
1996
).
4.
J. Z. H.
Zhang
,
S. I.
Chu
, and
W. H.
Miller
,
J. Chem. Phys.
88
,
6233
(
1988
).
5.
A.
Kupperman
and
G. C.
Schatz
,
J. Chem. Phys.
62
,
2502
(
1975
).
6.
E. A.
McCullough
, Jr.
and
R. E.
Wyatt
,
J. Chem. Phys.
51
,
1253
(
1969
).
7.
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
).
8.
R. T.
Pack
,
E. A.
Butcher
, and
G. A.
Parker
,
J. Chem. Phys.
102
,
5998
(
1995
).
9.
J.
Dai
and
J. Z. H.
Zhang
,
J. Phys. Chem.
100
,
6898
(
1996
).
10.
D. H.
Zhang
and
J. C.
Light
,
J. Chem. Phys.
105
,
1091
(
1996
).
11.
J.
Dai
and
J. Z. H.
Zhang
,
J. Phys. Chem.
100
,
13
901
(
1996
).
12.
W.
Zhu
,
J.
Dai
,
J. Z. H.
Zhang
, and
D. H.
Zhang
,
J. Chem. Phys.
105
,
4881
(
1996
).
13.
J. K.
Badenhoop
,
H.
Koizumi
, and
G. C.
Schatz
,
J. Chem. Phys.
91
,
142
(
1989
).
14.
R.
Schinke
and
W. A.
Lester
,
J. Chem. Phys.
72
,
3754
(
1980
).
15.
M.
Klaus
and
K.-H.
Gericke
,
J. Chem. Phys.
96
,
7490
(
1992
), and references therein.
16.
T.
Peng
,
D. H.
Zhang
,
J. Z. H.
Zhang
, and
R.
Shrinke
,
Chem. Phys. Lett.
248
,
37
(
1996
).
17.
R. J.
Buss
,
P.
Casavecchia
,
T.
Hirooka
, and
Y. T.
Lee
,
Chem. Phys. Lett.
82
,
386
(
1981
).
18.
D.-C.
Che
and
K.
Liu
,
J. Chem. Phys.
103
,
5164
(
1995
).
19.
E. M.
Goldfield
and
J. R.
Weisenfeld
,
J. Chem. Phys.
93
,
1030
(
1990
).
20.
A. C.
Luntz
,
R.
Schinke
,
W. A.
Lester
, and
H. H.
Gunthard
,
J. Chem. Phys.
70
,
5908
(
1979
).
21.
J. E.
Butler
and
G. K.
Smith
,
J. Chem. Phys.
73
,
2243
(
1980
).
22.
P. M.
Aker
and
J. J.
Sloan
,
J. Chem. Phys.
85
,
142
(
1980
).
23.
S. P.
Walch
and
L. B.
Harding
,
J. Chem. Phys.
88
,
7653
(
1988
).
24.
R. S.
Judson
,
D. J.
Kouri
,
D.
Neuhauser
, and
M.
Baer
,
Phys. Rev. A
42
,
351
(
1990
).
25.
D. J.
Tannor
and
D. E.
Weeks
,
J. Chem. Phys.
98
,
3884
(
1993
).
26.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
101
,
3671
(
1994
).
27.
Z.
Bacic
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
28.
D.
Neuhauser
and
M.
Baer
,
J. Chem. Phys.
90
,
4351
(
1989
).
29.
J. E.
Butler
,
R. G.
MacDonald
,
D. J.
Donaldson
, and
J. J.
Sloan
,
Chem. Phys. Lett.
95
,
183
(
1983
).
30.
K.
Rynefors
,
P. A.
Elofson
, and
L.
Holmlund
,
Chem. Phys.
100
,
53
(
1985
).
31.
J. C.
Light
,
J. Chem. Phys.
68
,
2831
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.