Pseudo-ensemble simulations and Gibbs–Duhem integrations are formulated within the framework of the expanded grand canonical ensemble. Pseudo-isobaric–isothermal simulations are proposed in which volume moves are replaced by fluctuations in the number of molecular segments. For large systems of dense athermal polymers, this pseudo-isobaric–isothermal method is shown to achieve mechanical equilibration faster than both conventional volume moves and the recently proposed slab volume moves. Pseudo-ensembles are also discussed for Gibbs ensemble simulations and canonical simulation (of the chemical potential). It is shown that coexistence curves for pure homopolymers and polymer mixtures can be traced by performing a numerical integration of the Gibbs–Duhem equation based on (expanded) grand canonical simulations. The validity of the methods is demonstrated by tracing the vapor–liquid coexistence curve of pure square-well chains and the liquid–liquid binodal curve of a blend of square-well chains.

1.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
2.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
3.
J. J.
de Pablo
,
M.
Laso
, and
U. W.
Suter
,
J. Chem. Phys.
96
,
6157
(
1992
);
D.
Frenkel
and
B.
Smit
,
Mol. Phys.
75
,
983
(
1992
).
4.
S. K.
Kumar
,
I.
Szleifer
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. Lett.
66
,
2935
(
1991
).
5.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
6.
M.
Mehta
and
D. A.
Kofke
,
Mol. Phys.
86
,
139
(
1995
).
7.
P. J.
Camp
and
M. P.
Allen
,
Mol. Phys.
88
,
1459
(
1996
).
8.
M.
Mehta
and
D. A.
Kofke
,
Chem. Eng. Sci.
49
,
2633
(
1994
).
9.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
105
,
4391
(
1996
).
10.
F. A.
Escobedo
and
J. J.
de Pablo
,
Macromol. Theory Simul.
4
,
691
(
1995
).
11.
W. W.
Wood
,
J. Chem. Phys.
48
,
415
(
1968
).
12.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
102
,
2636
(
1995
).
13.
J.
Chang
and
S. I.
Sandler
,
J. Chem. Phys.
103
,
3196
(
1995
).
14.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
103
,
1946
(
1995
).
15.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
103
,
2703
(
1995
).
16.
F. W.
Tavares
,
J.
Chang
, and
S. I.
Sandler
,
Mol. Phys.
86
,
1451
(
1995
).
17.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
18.
D.
Moller
and
J.
Fischer
,
Mol. Phys.
69
,
463
(
1990
).
19.
F.
Escobedo
and
J. J.
de Pablo
,
Mol. Phys.
87
,
347
(
1996
).
20.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
21.
N. B.
Wilding
,
Phys. Rev. E
52
,
602
(
1995
);
N. B.
Wilding
,
J. Chem. Phys.
105
,
802
(
1996
).
22.
In Ref. 9 expanded Gibbs simulations are implemented for pure component systems; the extension to multicomponent systems is straightforward and follows similar guidelines as for conventional Gibbs ensemble in Ref. 17.
23.
M.
Laso
,
J. J.
de Pablo
, and
U. W.
Suter
,
J. Chem. Phys.
97
,
2817
(
1992
).
G. C. A. M.
Mooij
,
D.
Frenkel
, and
B.
Smit
,
J. Phys. Cond. Mat.
4
,
L255
(
1992
).
24.
J. R.
Recht
and
A. Z.
Panagiotopoulos
,
Mol. Phys.
80
,
843
(
1993
).
25.
J.
Vrabec
and
J.
Fischer
,
Mol. Phys.
85
,
781
(
1995
).
26.
J. P.
Valleau
,
J. Comput. Phys.
96
,
193
(
1991
).
27.
P.
Camp
,
C. P.
Mason
,
M. P.
Allen
,
A. A.
Khare
, and
D.
Kofke
,
J. Chem. Phys.
105
,
2837
(
1996
).
28.
F.
Escobedo
and
J. J.
de Pablo
,
Mol. Phys.
89
,
1733
(
1996
).
29.
R. D.
Kaminsky
,
J. Chem. Phys.
101
,
4986
(
1994
).
30.
F. A. Escobedo, M. S. thesis, University of Nebraska-Lincoln, July 1993;
F.
Escobedo
and
H.
Viljoen
,
Ind. Eng. Chem. Res.
34
,
794
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.