Path integral molecular dynamics and centroid molecular dynamics have been applied to study and modify an empirical flexible model for water, the simple point charge/flexible (SPC/F) model. The quantum structural, thermodynamic and dynamical properties have been calculated and compared to their classical counterparts, as well as to experiment. The path integral molecular dynamics simulations demonstrate that the quantum liquid is less structured and exhibits less hydrogen bonding than its classical analog. Quantization also leads to a lower dielectric constant, relative to the corresponding classical value. Centroid molecular dynamics has been used to calculate single molecule time correlation functions, the Debye dielectric relaxation correlation function, and the power spectrum for the quantum model. These time correlation functions decay more rapidly than the classical ones, indicating that nuclear rotational tunneling occurs in the liquid. The power spectrum of the quantized liquid also exhibits red shifted bend and stretch frequencies relative to the classical model. A modification of the parametrization of the harmonic intramolecular potential for the simple point charge/flexible (SPC/F) model is suggested and tested in order to improve the dielectric properties as well as the values of the vibrational frequencies. The quantum simulation of the modified water model, called SPC/F2, gives better agreement with the experimental IR spectrum of water and the measured value of the dielectric constant. However, the self-diffusion constant for the modified SPC/F model is still somewhat too large relative to experiment. In addition, the NMR rotational time constant is too small compared to experiment. While these discrepancies leave room for future modifications (e.g., including electronic polarizability), the model represents the first parametrization of an empirical flexible water potential explicitly developed for quantum path integral simulations.

1.
K.
Watanabe
and
M. L.
Klein
,
Chem. Phys.
313
,
157
(
1989
).
2.
J. A.
Barker
and
R. O.
Watts
,
Chem. Phys. Lett.
3
,
144
(
1969
).
3.
F.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
60
,
1545
(
1974
).
4.
H. J. C. Berendson, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331.
5.
W. L.
Jorgenson
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
6.
J. R.
Reimers
,
R. O.
Watts
, and
M. L.
Klein
,
Chem. Phys.
64
,
95
(
1982
).
7.
J. R.
Reimers
and
R. O.
Watts
,
Chem. Phys.
91
,
201
(
1984
).
8.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
J. Phys. Chem.
87
,
5071
(
1983
).
9.
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
10.
G. S.
Del Buono
,
P. J.
Rossky
, and
J.
Schnitker
,
J. Chem. Phys.
95
,
3728
(
1991
).
11.
A.
Wallqvist
and
B. J.
Berne
,
Chem. Phys. Lett.
117
,
214
(
1985
).
12.
S. R.
Billeter
,
P. M.
King
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
100
,
6692
(
1994
).
13.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 1972).
14.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
15.
K. S.
Schweizer
,
R. M.
Stratt
,
D.
Chandler
, and
P. G.
Wolynes
,
J. Chem. Phys.
75
,
1347
(
1981
).
16.
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1987
).
17.
D. L.
Freeman
and
J. D.
Doll
,
Adv. Chem. Phys. B
70
,
139
(
1988
).
18.
J. D.
Doll
and
D. L.
Freeman
,
Adv. Chem. Phys.
73
,
289
(
1989
).
19.
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
78
,
61
(
1990
).
20.
Quantum Simulations of Condensed Matter Phenomena, edited by J. D. Doll and J. E. Gubernatis (World Scientific, Singapore, 1991).
21.
D. Chandler, in Liquides, Crıstallısation et Transition Vitreuse, Les Houches, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, Amsterdam, 1991).
22.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
104
,
2056
(
1996
).
23.
J. B.
Straus
,
A.
Calhoun
, and
G. A.
Voth
,
J. Chem. Phys.
102
,
529
(
1995
).
24.
A.
Calhoun
and
G. A.
Voth
,
J. Phys. Chem.
100
,
10746
(
1996
).
25.
K.
Toukan
and
A.
Rahman
,
Phys. Rev. B
31
,
2643
(
1985
).
26.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10
070
(
1993
).
27.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
28.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6157
(
1994
).
29.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
30.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
31.
The force on each quasiparticle necessary to constrain the centroid to a fixed position can be shown to be with the method of Lagrange multipliers to be—FH(c)/P.
32.
K.
Kutchitsu
and
Y.
Morino
,
Bull. Chem. Soc. Jpn.
38
,
814
(
1965
).
33.
S. W.
De Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London
388
,
177
(
1983
).
34.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
35.
J. S. Bader, Ph.D. thesis, Univ. of California at Berkeley (Dept. of Chemistry), 1991.
36.
L. V.
Woodcock
and
K.
Singer
,
Trans. Faraday Soc.
67
,
12
(
1971
).
37.
A.
Wallqvist
and
O.
Teleman
,
Mol. Phys.
74
,
515
(
1991
).
38.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
99
,
2796
(
1993
).
39.
W. C.
Swope
,
H. C.
Anderson
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
40.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
41.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
42.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
43.
H. C.
Anderson
,
J. Comput. Phys.
52
,
24
(
1983
).
44.
A. K.
Soper
and
M. G.
Philips
,
Chem. Phys.
107
,
47
(
1986
).
45.
A. K.
Soper
,
J. Chem. Phys.
101
,
6888
(
1994
).
46.
We do this for two reasons. First, the definitiveness of this new data in surplanting the older experimental results has not been established at this time as can be seen from the follow quote from Soper’s work (Ref. 45), “This appears to be largely a result of the different ways of performing the Fourier transform in either case, rather than anything intrinsic to the diffraction data themselves… In the future, with much enhanced counting statistics in the large Q region on the SANDALS instrument, it is hoped to resolve the true height of this peak with better precision.” Secondly, the SPC model was originally parametrized to match the older Soper data, and thus it seems more appropriate at this point to compare any modifications of the SPC model to the older data.
47.
Z.
Kurtovic̀
,
M.
Marchi
, and
D.
Chandler
,
Mol. Phys.
78
,
1155
(
1993
).
48.
D. Eisenberg and W. Kauzman, The Structure and Properties of Water (Oxford University Press, Oxford, 1969).
49.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
Mol. Phys.
46
,
513
(
1982
).
50.
J.
Barrat
and
I. R.
McDonald
,
Mol. Phys.
70
,
535
(
1990
).
51.
M.
Sprik
,
J. Chem. Phys.
95
,
2283
(
1991
).
52.
D. A. McQuarrie, in Statistical Mechanics (Harper & Row, New York, 1976), Chap. 21, p. 474.
53.
P.
Ahlström
,
A.
Wallqvist
,
S.
Engström
, and
B.
Jönsson
,
Mol. Phys.
68
,
563
(
1989
).
54.
D. N.
Bernardo
,
Y.
Ding
,
K.
Krogh-Jespersen
, and
R.
Levy
,
J. Phys. Chem.
98
,
4180
(
1994
).
55.
D. V.
Belle
,
M.
Froeyen
,
G.
Lippens
, and
S. J.
Wodak
,
Mol. Phys.
77
,
239
(
1992
).
56.
G. C. Schatz and M. A. Ratner, Quantum Mechanics in Chemistry (Prentice Hall, Englewood Cliffs, NJ, 1993).
57.
M.
Sprik
,
M. L.
Klein
, and
K.
Watanabe
,
J. Phys. Chem.
94
,
6483
(
1990
).
58.
F. H. Stillinger, in The Liquid State of Matter: Fluids, Simple and Complex, edited by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1982), p. 341.
59.
D.
Bertolini
,
M.
Cassettari
, and
G.
Salvetti
,
J. Chem. Phys.
76
,
3285
(
1982
).
60.
R. J.
Speedy
and
C. A.
Angell
,
J. Chem. Phys.
65
,
851
(
1976
).
61.
J.
Jonas
,
T.
DeFries
, and
D. J.
Wilber
,
J. Chem. Phys.
65
,
582
(
1976
).
62.
S.
Chen
,
K.
Toukan
,
C.
Loong
,
D. L.
Price
, and
J.
Teixeira
,
Phys. Rev. Lett.
53
,
1360
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.