We study the dynamics of an initially localized symmetric two-level system coupled to high-temperature dissipative environments and driven by a strong time-periodic force which corresponds to high-frequency monochromatic light. Qualitative arguments based on the quantized representation of the radiation field predict a wealth of intriguing behaviors which are confirmed and quantified via accurate numerical path integral calculations. With the exception of very strong friction we find that high-frequency driving always helps stabilize localized states. At intermediate friction the delocalization rate approaches a “universal’’ limiting value which is largely independent of the parameters of the environment and of the specifics of the driving force, depending only on its overall strength. This robust behavior implies that localized states can be stabilized in these systems without much finetuning of external conditions. In the weak friction regime the interplay between phase interference and dissipation results in nonmonotonic variation of the decay rate with friction and driving frequency. The path integral results are compared to those obtained earlier via analytical treatments.

1.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
M.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
2.
U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).
3.
F.
Grossmann
,
T.
Dittrich
,
P.
Jung
, and
P.
Hänggi
,
Phys. Rev. Lett.
67
,
516
(
1991
).
4.
F.
Grossmann
and
P.
Hänggi
,
Europhys. Lett.
18
,
571
(
1992
).
5.
R.
Bavli
and
H.
Metiu
,
Phys. Rev. Lett.
69
,
1986
(
1992
).
6.
M.
Grifoni
,
M.
Sassetti
,
J.
Stockburger
, and
U.
Weiss
,
Phys. Rev. E
48
,
3497
(
1993
).
7.
F.
Grossmann
,
T.
Dittrich
,
P.
Jung
, and
P.
Hänggi
,
J. Stat. Phys.
70
,
229
(
1993
).
8.
T.
Dittrich
,
B.
Oeschlagel
, and
P.
Hänggi
,
Europhys. Lett.
22
,
5
(
1993
).
9.
D. E.
Makarov
and
N.
Makri
,
Phys. Rev. E
52
,
5863
(
1995
).
10.
Y.
Dakhnovskii
,
Phys. Rev. B
49
,
4649
(
1994
).
11.
Y.
Dakhnovskii
,
Ann. Phys.
235
,
145
(
1994
).
12.
Y.
Dakhnovskii
,
J. Chem. Phys.
100
,
6492
(
1994
).
13.
Y.
Dakhnovskii
and
R. D.
Coalson
,
J. Chem. Phys.
103
,
2908
(
1995
).
14.
M.
Grifoni
,
M.
Sassetti
,
P.
Hänggi
, and
U.
Weiss
,
Phys. Rev. E
52
,
3596
(
1995
).
15.
N. Makri and L. Wei, Phys. Rev. E (in press).
16.
D. E.
Makarov
and
N.
Makri
,
Phys. Rev. B
52
,
R2257
(
1995
).
17.
R.
Loefstedt
and
S. N.
Coppersmith
,
Phys. Rev. Lett.
72
,
1947
(
1994
).
18.
M.
Grifoni
and
P.
Hänggi
,
Phys. Rev. Lett.
76
,
1611
(
1996
).
19.
D. G.
Evans
,
R. D.
Coalson
,
H.
Kim
, and
Y.
Dakhnovskii
,
Phys. Rev. Lett.
(
1996
).
20.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
21.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
22.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
23.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
24.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
25.
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
(
1983
).
26.
N.
Makri
,
Chem. Phys. Lett.
193
,
435
(
1992
).
27.
R. P.
Feynman
and
J. F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
28.
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
78
,
61
(
1990
).
29.
N.
Makri
,
Comput. Phys. Commun.
63
,
389
(
1991
).
30.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
448
(
1993
).
31.
E.
Sim
and
N.
Makri
,
Chem. Phys. Lett.
249
,
224
(
1996
).
32.
E. Sim and N. Makri, Comput. Phys. Commun. (in press).
33.
H.
Frauenfelder
and
P. G.
Wolynes
,
Science
228
,
337
(
1985
).
34.
L. D. Landau, Z. Sowjun, 2, 46 (1932).
35.
C.
Zener
,
Proc. R. Soc. A
137
,
696
(
1932
).
36.
E.
Stueckelberg
,
Helv. Phys. Acta
5
,
369
(
1932
).
37.
B. L.
Tembe
,
H. L.
Friedman
, and
M. D.
Newton
,
J. Chem. Phys.
76
,
1490
(
1982
).
38.
L. D.
Zusman
,
Chem. Phys.
49
,
295
(
1980
).
39.
R. E.
Cline
and
P. G.
Wolynes
,
J. Chem. Phys.
86
,
3836
(
1987
).
40.
M.
Topaler
and
N.
Makri
,
J. Phys. Chem.
100
,
4430
(
1996
).
41.
T.
Dittrich
,
F.
Grossman
,
P.
Jung
,
B.
Oelschlagel
, and
P.
Hanggi
,
Physica A
194
,
173
(
1993
).
42.
J. N.
Onuchic
and
P. G.
Wolynes
,
J. Phys. Chem.
92
,
6495
(
1988
).
43.
A.
Auerbach
and
S.
Kivelson
,
Nuc. Phys. B
257
,
799
(
1985
).
44.
S.
Takada
and
H.
Nakamura
,
J. Chem. Phys.
102
,
3977
(
1995
).
45.
J.
Plata
and
J. M.
Gomez Llorente
,
Phys. Rev. A
48
,
782
(
1993
).
46.
D. E.
Makarov
,
Phys. Rev. E
48
,
R4146
(
1993
).
47.
This explanation of the discrepancy between Dakhnovskii's the numerical results was originally communicated by the referee.
48.
M. Grifoni and P. Hänggi, in Adriatico Research Conference “Tunneling and its Implications,” edited by D. Mugnai, A. Ranfagni, and L. S. Schulman, (World Scientific, Singapore, 1997).
49.
M.
Morillo
and
R. I.
Cukier
,
J. Chem. Phys.
98
,
4548
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.