When irradiated with a laser, the lattice constant of a colloid crystal changes in response to the temperature gradient created in the solvent. Using constant pressure/constant temperature molecular dynamics simulations, the expansion and compression of charge stabilized colloid crystals is investigated. Two systems are considered, both of which correspond approximately to samples which have been experimentally characterized. It is shown that these colloid crystals do not melt over a temperature range of 298 K to 368 K. One system only expands with increasing temperature, while the other initially expands and then contracts. Colloid number density is calculated as a function of temperature at the center of the heated region. An analytical model of the dependence of equilibrium lattice parameter on external pressure for a crystal characterized by zero colloid temperature is presented. Because these crystals remain relatively rigid even in the physically relevant temperature range, it is argued that a zero colloid temperature model should be qualitatively reasonable. Indeed, the model calculations support the basic conclusions drawn from full molecular dynamics simulations, and by comparison highlight effects due to finite temperature motion of the colloid particles.

1.
D.
Thirumalai
,
J. Phys. Chem.
93
,
5637
(
1989
).
2.
H. M.
Lindsay
and
P. M.
Chaikin
,
J. Chem. Phys.
76
,
3774
(
1982
).
3.
Y.
Monovoukas
and
A. P.
Gast
,
J. Colloid Interface Sci.
128
,
533
(
1989
).
4.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
88
,
3286
(
1988
).
5.
W.
Shih
and
D.
Stroud
,
J. Chem. Phys.
79
,
6254
(
1983
).
6.
R.
Williams
,
R. S.
Crandell
, and
P. J.
Wojtowicz
,
Phys. Rev. Lett.
37
,
348
(
1976
).
7.
A. K. Sood, in Solid State Physics 45, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1991).
8.
E. Verwey and J. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, New York, 1948).
9.
D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1973).
10.
P.
Rundquist
,
S.
Jagannathan
,
R.
Kesavamoorthy
,
C.
Brnardic
,
S.
Xu
, and
S. A.
Asher
,
J. Chem. Phys.
94
,
711
(
1991
).
11.
S. A.
Asher
,
J.
Holtz
,
L.
Liu
, and
Z.
Wu
,
J. Am. Chem. Soc.
116
,
4997
(
1994
).
12.
R.
Williams
and
R. S.
Crandall
,
Phys. Lett. A
48
,
225
(
1974
).
13.
M. K.
Udo
and
M. F.
de Souza
,
Solid State Commun.
35
,
907
(
1980
).
14.
S. A.
Asher
,
P. L.
Flaugh
, and
G.
Washinger
,
Spectroscopy
1
,
26
(
1986
).
15.
P. A.
Rundquist
,
P.
Photinos
,
S.
Jagannathan
, and
S. A.
Asher
,
J. Chem. Phys.
91
,
4932
(
1989
).
16.
S. A. Asher, U. S. Patents Nos. 4,627,689 and 4,632,517.
17.
D.
Hone
,
S.
Alexander
, and
P. M.
Chaikin
,
J. Chem. Phys.
79
,
1474
(
1983
).
18.
R.
Kesavamoorthy
,
B. V. R.
Tata
,
A. K.
Arora
, and
A. K.
Sood
,
Phys. Lett. A
138
,
208
(
1989
).
19.
W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989).
20.
W. Y.
Shih
,
I. A.
Aksay
, and
R.
Kikuchi
,
J. Chem. Phys.
86
,
5127
(
1987
).
21.
B. V. R.
Tata
and
A. K.
Arora
,
J. Phys. Condens. Matter
3
,
7983
(
1991
).
22.
J. C.
Zahorchak
,
R.
Kesavamoorthy
,
R. D.
Coalson
, and
S. A.
Asher
,
J. Chem. Phys.
96
,
6873
(
1992
).
23.
D. W.
Schaefer
,
J. Chem. Phys.
66
,
3980
(
1977
).
24.
D. W.
Schaefer
and
B. J.
Ackerson
,
Phys. Rev. Lett.
35
,
1448
(
1975
).
25.
N.
Dovichi
,
Crit. Rev. Anal. Chem.
17
,
357
(
1987
).
26.
R.
Kesavamoorthy
,
S.
Jagannathan
,
P.
Rundquist
, and
S. A.
Asher
,
J. Chem. Phys.
94
,
5172
(
1991
).
27.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
J.
Morales
, and
P.
Pincus
,
J. Chem. Phys.
80
,
5776
(
1984
).
28.
P. A.
Rundquist
,
R.
Kesavamoorthy
,
S.
Jagannathan
, and
S. A.
Asher
,
J. Chem. Phys.
95
,
8546
(
1991
).
29.
A proper kinetic description of colloid motion requires the use of Brownian Dynamics (with the possible inclusion of hydrodynamic corrections), due to interactions of the colloid particles with solvent molecules. However, simple Newtonian molecular dynamics (with appropriate potentials of mean force between pairs of colloid particles) generates a sequence of equilibrium configurations of the colloid system and hence suffices for the computation of equilibrium properties of interest in the present work.
30.
R.
Kesavamoorthy
,
M. S.
Super
, and
S. A.
Asher
,
J. Appl. Phys.
71
,
1116
(
1992
).
31.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989).
32.
S.
Nosé
,
Molec. Phys.
52
,
255
(
1983
).
33.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
34.
J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd ed. (Wiley, New York, 1975).
35.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).
36.
These Newtonian molecular dynamics data are not intended to represent the actual kinetics of a colloidal crystal or suspension. For example, they should not be used to extract diffusion constants. We simply utilize them here as an indicator of the phase of the colloid system, depending on whether the MSD saturates at long times or not.
37.
References on melting point criteria are provided in Ref. 22.
38.
A.
Rahman
,
Phys. Rev. A
136
,
405
(
1964
).
39.
and also to the “linear deformation” model of Ref. 26, which is based on rather different assumptions (cf. Fig. 4 of that work).
40.
The same qualitative conclusion was reached in Ref. 26 based on a different analysis.
This content is only available via PDF.
You do not currently have access to this content.