We use Monte Carlo simulations to study the thermodynamics and structural behavior of random heteropolymers immersed in a disordered medium. Simulation results pertain to isolated heteropolymer chains with renormalized intrachain interactions determined by analytic averaging over the realizations of the external medium. Two situations are considered. In the first scenario, the random heteropolymer is such that segments of different type have a propensity to segregate, while in the second situation different types of segments prefer to be adjacent to each other. Polymer configurations are generated by the ensemble-growth Monte Carlo method wherein the slow-down effects that typically hinder dynamic Monte Carlo simulations of compact polymer states with strong interactions are alleviated. Our simulations show that for the case where the bare heteropolymer prefers to form segregated patterns, below a certain temperature, the random heteropolymer “folds” into a few dominant conformations with a segregated pattern of contacts. In the case where the bare heteropolymer favors mixing of different types of segments we find richer behavior. Here, our simulations show the existence of two frozen phases separated by a reentrant phase as temperature (or strength of the external disorder) is scanned. The heteropolymers in the two frozen phases are “folded” in different patterns (high T, mixed pattern; low T, segregated pattern). The physical reasons for these phenomena are elucidated based on our simulation results for structural features of the polymer. The results agree remarkably well with a simple mean-field theory, a fact that may be of some general consequence. Specific experiments are suggested to test the phenomena that we predict.

1.
G.
Iori
,
E.
Marinari
,
G.
Parisi
, and
M. V.
Struglia
,
Physica A
185
,
98
(
1992
).
2.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Nature
336
,
773
(
1990
).
3.
R.
Goldstein
,
Z. A.
Lithey-Schulten
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci.
89
,
9029
(
1992
).
4.
H. S.
Chan
and
K. A.
Dill
,
Physics Today
46
(
2
),
24
(
1993
).
5.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Proc. Natl. Acad. Sci.
90
,
7195
(
1993
).
6.
H.
Frauenfelder
and
P. G.
Wolynes
,
Physics Today
47
(
2
),
58
(
1994
).
7.
A.
Sali
,
E. I.
Shakhnovich
, and
M.
Karplus
,
Nature
369
,
248
(
1994
).
8.
M. Karplus and E. I. Shakhnovich, in Protein Folding, edited by T. E. Creighton (Freeman, New York, 1995), p. 127.
9.
G.
Iori
,
E.
Marinari
, and
G.
Parisi
,
J. Phys. A
24
,
5349
(
1991
).
10.
M.
Fukugita
,
D.
Lancaster
, and
M. G.
Mitchard
,
J. Phys. A
25
,
L121
(
1992
).
11.
M. V.
Struglia
,
J. Phys. A
28
,
1469
(
1995
).
12.
C. D.
Sfatos
,
A. M.
Gutin
, and
E. I.
Shakhnovich
,
Phys. Rev. E
48
,
465
(
1993
).
13.
E. I.
Shakhnovich
and
A. M.
Gutin
,
J. Phys. A
22
,
1647
(
1989
).
14.
A. Y.
Grosberg
and
E. I.
Shakhnovich
,
Soviet Physics (JETP)
64
,
1284
(
1986
).
15.
J. D.
Bryngelson
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci.
84
,
7524
(
1987
).
16.
A.
Baumgartner
and
M.
Muthukumar
,
J. Chem. Phys.
87
,
3082
(
1987
).
17.
C.
Qian
and
A. L.
Kholodenko
,
J. Chem. Phys.
89
,
5273
(
1988
);
A. P.
Thompson
and
E. D.
Glandt
,
J. Chem. Phys.
99
,
8325
(
1993
).
18.
T.
Garel
and
H.
Orland
,
Europhys. Lett.
6
,
307
(
1988
).
19.
M. E.
Cates
and
R. C.
Ball
,
J. Phys. (Paris)
49
,
2009
(
1988
).
20.
J.
Machta
and
R. A.
Guyer
,
J. Phys. A
22
,
2539
(
1989
).
21.
E. I.
Shakhnovich
and
A. M.
Gutin
,
J. Phys. (Paris)
50
,
1843
(
1989
).
22.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Biophys. Chem.
34
,
187
(
1989
).
23.
J. D.
Honeycut
and
D.
Thirumalai
,
J. Chem. Phys.
90
,
4542
(
1989
).
24.
S. F.
Edwards
and
M.
Muthukumar
,
J. Chem. Phys.
89
,
2435
(
1989
).
25.
M.
Muthukumar
,
J. Chem. Phys.
90
,
4594
(
1989
).
26.
J. P.
Bouchaud
and
A.
Georges
,
Phys. Rep. C
195
,
127
(
1990
).
27.
C. M.
Marques
and
J. F.
Joanny
,
Macromolecules
23
,
268
(
1990
).
28.
T.
Cosgrove
,
N. A.
Finch
, and
J. R.
Webster
,
Macromolecules
23
,
3353
(
1990
).
29.
G. H.
Fredrickson
and
S. T.
Milner
,
Phys. Rev. Lett.
67
,
835
(
1991
).
30.
D. Chandler, in Les Houches, Part I., Liquids, Freezing, and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, Amsterdam, 1991) p. 193.
31.
G. H.
Fredrickson
,
S. T.
Milner
, and
L.
Leibler
,
Macromolecules
25
,
6341
(
1992
).
32.
D.
Wu
,
K.
Hui
, and
D.
Chandler
,
J. Chem. Phys.
96
,
835
(
1992
).
33.
S.
Stepanov
,
J. Phys. A
25
,
6187
(
1992
).
34.
A. K.
Chakraborty
and
G. H.
Fredrickson
,
Macromolecules
27
,
7079
(
1994
).
35.
G. Z.
Archontis
and
E. I.
Shakhnovich
,
Phys. Rev. E
49
,
3109
(
1994
).
36.
V. S.
Pande
,
A. Y.
Grosberg
, and
T.
Tanaka
,
J. Phys. (Paris)
4
,
1771
(
1994
);
V. S.
Pande
,
A. Y.
Grosberg
, and
T.
Tanaka
,
J. Phys. A: Math. Gen.
28
,
3657
(
1995
).
37.
K.
Leung
and
D.
Chandler
,
J. Chem. Phys.
102
,
1405
(
1994
).
38.
A. K.
Chakraborty
,
D.
Bratko
, and
D.
Chandler
,
J. Chem. Phys.
100
,
1528
(
1994
).
39.
P.
Haronska
and
T. A.
Vilgis
,
J. Chem. Phys.
101
,
3104
(
1994
).
40.
Y.
Kantor
,
M.
Kardar
, and
H.
Li
,
Phys. Rev. E
49
,
1383
(
1994
).
41.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
101
,
10074
(
1994
).
42.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
103
,
10733
(
1995
).
43.
A. K.
Chakraborty
and
E. I.
Shakhnovich
,
J. Chem. Phys.
103
,
10751
(
1995
).
44.
D.
Bratko
and
A. K.
Chakraborty
,
Phys. Rev. E
51
,
5805
(
1995
);
D.
Bratko
and
A. K.
Chakraborty
,
J. Chem. Phys.
104
,
7700
(
1996
).
45.
C. D.
Sfatos
,
A. M.
Gutin
, and
E. I.
Shakhnovich
,
Phys. Rev. E
51
,
4727
(
1995
).
46.
J. S.
Shaffer
,
Macromolecules
28
,
7447
(
1995
).
47.
N. D.
Socci
and
J. N.
Onuchic
,
J. Chem. Phys.
103
,
4732
(
1995
).
48.
Y. A.
Kuznetsov
,
E. G.
Timoshenko
and
K. A.
Dawson
,
J. Chem. Phys.
103
,
4807
(
1995
).
49.
D.
Bratko
and
A. K.
Chakraborty
,
J. Phys. Chem.
100
,
1164
(
1996
).
50.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
).
51.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford, New York, 1989).
52.
K. Freed, Renormalization Group Theory of Macromolecules (Wiley, New York, 1987), Chap. 4.
53.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
54.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, 1972).
55.
J.
Melenkevitz
,
K. S.
Schweitzer
, and
J. G.
Curro
,
Macromolecules
26
,
6190
(
1993
).
56.
F. T.
Wall
and
F.
Mandel
,
J. Chem. Phys.
63
,
4592
(
1975
).
57.
T.
Garel
and
H.
Orland
,
J. Phys. A
23
,
L621
(
1990
).
58.
P. G.
Higgs
and
H.
Orland
,
J. Chem. Phys.
95
,
4506
(
1991
).
59.
A. R.
de Souza
and
L.
Degreve
,
Mol. Simul.
11
,
337
(
1991
).
60.
A.
Weyersberg
and
T. A.
Vilgis
,
Phys. Rev. E
48
,
377
(
1993
).
61.
G.
Parisi
,
J. Phys. A: Math. Gen.
13
,
1101
(
1980
).
62.
M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
63.
M.
Mezard
,
G.
Parisi
,
N.
Sourlas
,
G.
Toulouse
, and
M.
Virasoro
,
Phys. Rev. Lett.
52
,
1156
(
1984
).
64.
M.
Mezard
,
G.
Parisi
,
N.
Sourlas
,
G.
Toulouse
, and
M.
Virasoro
,
J. Phys. (Paris)
45
,
843
(
1984
).
65.
M.
Mezard
and
G.
Parisi
,
J. Phys. (Paris) I
1
,
809
(
1991
).
66.
K.
Binder
and
A. P.
Young
,
Rev. Mod. Phys.
58
,
801
(
1986
).
67.
K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, UK, 1991).
68.
R. N.
Bhatt
and
A. P.
Young
,
J. Magn. Magn. Mater.
54
,
191
(
1986
).
69.
R. N.
Bhatt
and
A. P.
Young
,
J. Phys.: Cond. Matter.
1
,
2997
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.