We analyze the electron densities n(r) of atoms, molecules, solids, and surfaces. The distributions of values of the Seitz radius rs=(3/4πn)1/3 and the reduced density gradient s=|∇n|/(2(3π2)1/3n4/3) in an electron density indicate which ranges of these variables are significant for physical processes. We also define energy-weighted averages of these variables, 〈rs and 〈s〉, from which local spin density (LSD) and generalized gradient approximation (GGA) exchange-correlation energies may be estimated. The changes in these averages upon rearrangement of the nuclei (atomization of molecules or solids, stretching of bond lengths or lattice parameters, change of crystal structure, etc.) are used to explain why GGA corrects LSD in the way it does. A thermodynamic-like inequality (essentially d〈s〉/〈s〉>d〈rs〉/2〈rs〉) determines whether the gradient corrections drive a process forward. We use this analysis to explain why gradient corrections usually stretch bonds (but not for example H–H bonds), reduce atomization and surface energies, and raise energy barriers to formation at transition states.

1.
R. O.
Jones
and
O.
Gunnarsson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
2.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).
3.
R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).
4.
J. M. Seminario and P. Politzer, Eds., Modern Density Functional Theory: A Tool for Chemistry (Elsevier, Amsterdam, 1995).
5.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
6.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
7.
J. P.
Perdew
and
K.
Burke
,
Int. J. Quantum Chem.
57
,
309
(
1996
).
8.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
78
,
1396
(E) (
1997
).See also Ref. 52.,
Phys. Rev. Lett.
9.
N.
Moll
,
M.
Bockstedte
,
M.
Fuchs
,
E.
Pehlke
, and
M.
Scheffler
,
Phys. Rev. B
52
,
2550
(
1995
).
10.
P. H. T.
Philipsen
and
E. J.
Baerends
,
Phys. Rev. B
54
,
5326
(
1996
).
11.
M.
Taut
,
J. Phys. C
19
,
6009
(
1986
).
12.
A.
Zupan
,
J. P.
Perdew
,
K.
Burke
, and
M.
Causá
,
Int. J. Quantum Chem.
61
,
835
(
1997
).
13.
R. Dovesi, C. Pisani, C. Roetti, M. Causà, and V. R. Saunders (unpublished).
14.
R. Dovesi, V. R. Saunders, and C. Roetti (unpublished).
15.
C. Pisani, R. Dovesi, and C. Roetti, HF Ab Initio Treatment of Crystalline Systems, Vol. 48 of Lecture Notes in Chemistry Series (Springer-Verlag, Berlin, 1988).
16.
M.
Towler
,
A.
Zupan
, and
M.
Causà
,
Comp. Phys. Comm.
98
,
181
(
1996
).
17.
J. P. Perdew, in Electronic Structure of Solids’91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11.
18.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
);
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
48
,
4978
(
1993
) (E).,
Phys. Rev. B
19.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
).
20.
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for further information.
21.
M.
Causà
,
R.
Dovesi
, and
C.
Roetti
,
Phys. Rev. B
43
,
11937
(
1991
).
22.
M.
Prencipe
,
A.
Zupan
,
R.
Dovesi
,
E.
Aprà
, and
V. R.
Saunders
,
Phys. Rev. B
51
,
3391
(
1995
).
23.
W. G. Wyckoff, Crystal Structures, 2nd ed. (Wiley, New York, 1963), Vol. 1.
24.
G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand-Reinhold, Princeton, NJ, 1970).
25.
A. D.
Becke
,
J. Chem. Phys.
97
,
9173
(
1992
).
26.
E. I.
Proynov
,
E.
Ruiz
,
A.
Vela
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
S29
,
61
(
1995
).
27.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
28.
V.
Ozolinš
and
M.
Körling
,
Phys. Rev. B
48
,
18304
(
1993
).
29.
C.
Filippi
,
D. J.
Singh
, and
C.
Umrigar
,
Phys. Rev. B
50
,
14
947
(
1994
).
30.
J. C.
Grossman
,
L.
Mitas
, and
K.
Raghavachari
,
Phys. Rev. Lett.
75
,
3870
(
1995
);
J. C.
Grossman
,
L.
Mitas
, and
K.
Raghavachari
,
76
,
1006
(
1996
) (E).,
Phys. Rev. Lett.
31.
D. R.
Hamann
,
Phys. Rev. Lett.
76
,
660
(
1996
).
32.
L.
Fan
and
T.
Ziegler
,
J. Chem. Phys.
94
,
6057
(
1991
).
33.
D. R.
Hamann
,
Phys. Rev. B
55
,
R10157
(
1997
);
C.
Lee
,
D.
Vanderbilt
,
K.
Laasonen
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. Lett.
69
,
462
(
1992
).
34.
F.
Sim
,
A.
St-Amant
,
I.
Papai
, and
D. R.
Salahub
,
J. Am. Chem. Soc.
114
,
4391
(
1992
).
35.
D. C.
Patton
,
D. V.
Porezag
, and
M. R.
Pederson
,
Phys. Rev. B
55
,
7454
(
1997
).
36.
P.
Bagno
,
O.
Jepsen
, and
O.
Gunnarsson
,
Phys. Rev. B
40
,
1997
(
1989
).
37.
D. J.
Singh
and
J.
Ashkenazi
,
Phys. Rev. B
46
,
11
570
(
1992
).
38.
B. D.
Yu
and
M.
Scheffler
,
Phys. Rev. Lett.
77
,
1095
(
1996
).
39.
B.
Hammer
,
K. W.
Jacobsen
, and
J. K.
No/rskov
,
Phys. Rev. Lett.
70
,
3971
(
1993
).
40.
L.
Fan
and
T.
Ziegler
,
J. Am. Chem. Soc.
114
,
10890
(
1992
);
L.
Deng
,
T.
Ziegler
, and
L.
Fan
,
J. Chem. Phys.
99
,
3823
(
1993
).
41.
D.
Porezag
and
M. R.
Pederson
,
J. Chem. Phys.
102
,
9345
(
1995
).
42.
B. G.
Johnson
,
C. A.
Gonzales
,
P. M. W.
Gill
, and
J. A.
Pople
,
Chem. Phys. Lett.
221
,
100
(
1994
).
43.
S. P.
Walch
,
R. J.
Duchovic
, and
C. M.
Rohlfing
,
J. Chem. Phys.
90
,
3230
(
1989
).
44.
S. P.
Walch
,
J. Chem. Phys.
93
,
2384
(
1990
).
45.
W. R.
Schultz
and
D. J.
LeRoy
,
J. Chem. Phys.
42
,
3869
(
1965
).
46.
L. A.
Curtiss
,
D. L.
Drapcho
, and
J. A.
Pople
,
Chem. Phys. Lett.
103
,
437
(
1984
).
47.
S. F.
Selgren
,
P. W.
McLoughlin
, and
G. I.
Gellene
,
J. Chem. Phys.
90
,
1624
(
1989
).
48.
P. J.
Feibelman
and
J.
Harris
,
Nature
372
,
135
(
1994
).
49.
J. M. Seminario, M. Grodzicki, and P. Politzer, in Density Functional Methods in Chemistry, edited by J. Labanowski and J. Andzelm (Springer, Berlin, 1990).
50.
A.
Bormann
and
R. O.
Jones
,
Chem. Phys. Lett.
252
,
1
(
1996
).
51.
C.
Ratsch
,
A. P.
Seitsonen
, and
M.
Scheffler
,
Phys. Rev. B
55
,
6750
(
1997
).
52.
J. P. Perdew, M. Ernzerhof, A. Zupan, and K. Burke (unpublished).
53.
M.
Ernzerhof
,
Chem. Phys. Lett.
263
,
499
(
1996
).
54.
K.
Burke
,
M.
Ernzerhof
, and
J. P.
Perdew
,
Chem. Phys. Lett.
265
,
115
(
1997
).
55.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
56.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
57.
M. Ernzerhof, J. P. Perdew, and K. Burke, Int. J. Quantum Chem. (to be published).
58.
J. P.
Perdew
,
Phys. Rev. Lett.
55
,
1665
(
1985
);
J. P.
Perdew
,
55
,
2370
(
1985
) (E).,
Phys. Rev. Lett.
59.
M.
Springer
,
P. S.
Svendsen
, and
U.
von Barth
,
Phys. Rev. B
54
,
17
392
(
1996
).
60.
Z. Yan, J. P. Perdew, T. Korhonen, and P. Ziesche, Phys. Rev. A (in press).
This content is only available via PDF.
You do not currently have access to this content.