A new linear scaling method for computation of the Cartesian Gaussian-based Hartree-Fock exchange matrix is described, which employs a method numerically equivalent to standard direct SCF, and which does not enforce locality of the density matrix. With a previously described method for computing the Coulomb matrix [J. Chem. Phys. 106, 5526 (1997)], linear scaling incremental Fock builds are demonstrated for the first time. Microhartree accuracy and linear scaling are achieved for restricted Hartree-Fock calculations on sequences of water clusters and polyglycine α-helices with the 3-21G and 6-31G basis sets. Eightfold speedups are found relative to our previous method. For systems with a small ionization potential, such as graphitic sheets, the method naturally reverts to the expected quadratic behavior. Also, benchmark 3-21G calculations attaining microhartree accuracy are reported for the P53 tetramerization monomer involving 698 atoms and 3836 basis functions.

1.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
101
,
6593
(
1994
).
2.
C. A.
White
,
B.
Johnson
,
P.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
3.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
104
,
2620
(
1996
).
4.
C. A.
White
and
M.
Head-Gordon
,
Chem. Phys. Lett.
257
,
647
(
1996
).
5.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
105
,
5061
(
1996
).
6.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Science
271
,
51
(
1996
).
7.
M.
Challacombe
and
E.
Schwegler
,
J. Chem. Phys.
106
,
5526
(
1997
).
8.
J. P.
Dombroski
,
S. W.
Taylor
, and
P. M. W.
Gill
,
J. Phys. Chem.
100
,
6272
(
1996
).
9.
X. P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10
891
(
1993
).
10.
S.
Goedecker
and
L.
Colombo
,
Phys. Rev. Lett.
73
,
122
(
1994
).
11.
E.
Hernández
,
M. J.
Gillan
, and
C. M.
Goringe
,
Phys. Rev. B
53
,
7147
(
1996
).
12.
W.
Yang
and
T. S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
13.
A. F.
Voter
,
J. D.
Kress
, and
R. N.
Silver
,
Phys. Rev. B
53
,
12
733
(
1996
).
14.
W.
Kohn
,
Phys. Rev. Lett.
76
,
3168
(
1996
).
15.
A. P.
Horsfield
and
A. M.
Bratkovsky
,
Phys. Rev. B
53
,
15
381
(
1996
).
16.
S. L.
Dixon
and
K. M.
Merz
,
J. Chem. Phys.
104
,
6643
(
1996
).
17.
E.
Schwegler
and
M.
Challacombe
,
J. Chem. Phys.
105
,
2726
(
1996
).
18.
J. C.
Burant
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
105
,
8969
(
1996
).
19.
P.
Ordejón
,
D. A.
Drabold
,
R. M.
Martin
, and
M. P.
Grumbach
,
Phys. Rev. B
51
,
1456
(
1995
).
20.
F.
Mauri
,
G.
Galli
, and
R.
Car
,
Phys. Rev. B
47
,
9973
(
1993
).
21.
P.
Ordejón
and
D. A.
Drabold
,
Phys. Rev. B
48
,
14
646
(
1993
).
22.
E. B.
Stechel
,
A. R.
Williams
, and
P. J.
Feibleman
,
Phys. Rev. B
49
,
10
088
(
1994
).
23.
X.
Chen
,
J. M.
Langlois
, and
W. A.
Goddard
III
,
Phys. Rev. B
54
,
2348
(
1995
).
24.
J.
Kim
,
F.
Mauri
, and
G.
Galli
,
Phys. Rev. B
52
,
1640
(
1995
).
25.
P.
Ordejón
,
E.
Artacho
, and
J. M.
Soler
,
Phys. Rev. B
53
,
10
441
(
1996
).
26.
J. P.
Stewart
,
Int. J. Quantum Chem.
58
,
133
(
1996
).
27.
A.
Canning
et al.,
Comp. Phys. Comm.
94
,
89
(
1996
).
28.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
29.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
30.
B.
Johnson
,
P.
Gill
, and
J.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
31.
C. W.
Bauschlicher
,
Chem. Phys. Lett.
246
,
40
(
1995
).
32.
G. S.
Tschumper
,
J. T.
Fermann
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
104
,
3676
(
1996
).
33.
V.
Barone
,
C.
Adamo
, and
F.
Mele
,
Chem. Phys. Lett.
249
,
290
(
1996
).
34.
P. O.
Löwdin
,
Phys. Rev.
97
,
1490
(
1955
).
35.
P. R.
Surján
,
M.
Kertész
,
A.
Karpfen
, and
J.
Koller
,
Phys. Rev. B
27
,
7583
(
1983
).
36.
P. Maslen et al., (in preparation).
37.
R.
Dovesi
,
C.
Pisani
, and
C.
Roetti
,
Int. J. Quantum Chem.
17
,
517
(
1980
).
38.
H. J.
Monkhorst
and
M.
Kertész
,
Phys. Rev. B
24
,
3015
(
1981
).
39.
M.
Causà
,
R.
Dovesi
,
C.
Pisani
, and
V. R.
Saunders
,
J. Phys. Chem.
92
,
909
(
1988
).
40.
C.
Pisani
,
E.
Aprà
, and
M.
Causà
,
Int. J. Quantum Chem.
38
,
395
(
1990
).
41.
C.
Pisani
,
M.
Causà
, and
R.
Orlando
,
Int. J. Quantum Chem.
38
,
419
(
1990
).
42.
W.
Kohn
,
Phys. Rev.
115
,
809
(
1959
).
43.
J.
des Cloizeaux
,
Phys. Rev. A
135
,
685
(
1964
).
44.
W.
Kohn
,
Int. J. Quantum Chem.
56
,
229
(
1995
).
45.
J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979).
46.
H.
Böhm
and
R.
Ahlrichs
,
J. Chem. Phys.
77
,
2028
(
1982
).
47.
F.
Maeder
,
J. Chem. Phys.
88
,
4934
(
1988
).
48.
I.
Panas
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Int. J. Quantum Chem.
40
,
797
(
1991
).
49.
V.
Termath
and
N. C.
Handy
,
Chem. Phys. Lett.
230
,
17
(
1994
).
50.
G. R.
Ahmadi
and
J.
Almlöf
,
Chem. Phys. Lett.
246
,
364
(
1995
).
51.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
,
J. Comp. Chem.
3
,
385
(
1982
).
52.
M.
Häser
and
R.
Ahlrichs
,
J. Comp. Chem.
10
,
104
(
1989
).
53.
E. Schwegler and M. Challacombe (unpublished).
54.
D.
Cremer
and
J.
Gauss
,
J. Comput. Chem.
7
,
274
(
1986
).
55.
M. Dupuis, A. Marquez, and E. R. Davidson, HONDO 95.3 from CHEMStation, IBM Corporation, Neighborhood Road, Kingston, New York 12401, 1995.
56.
Coordinate files available upon request.
This content is only available via PDF.
You do not currently have access to this content.