We apply dimensional perturbation theory to the calculation of Regge pole positions, providing a systematic improvement to earlier analytic first-order results. We consider the orbital angular momentum l as a function of spatial dimension D for a given energy E, and expand l in inverse powers of κ≡(D−1)/2. It is demonstrated for both bound and resonance states that the resulting perturbation series often converges quite rapidly, so that accurate quantum results can be obtained via simple analytic expressions given here through third order. For the quartic oscillator potential, the rapid convergence of the present l(D;E) series is in marked contrast with the divergence of the more traditional E(D;l) dimensional perturbation series, thus offering an attractive alternative for bound state problems.

1.
J. R. Taylor, Scattering Theory (Wiley, New York, 1972), pp. 302–314.
2.
K.-E. Thylwe, in Resonances: The Unifying Route Towards the Formulation of Dynamical Processes, Foundations and Applications in Nuclear, Atomic and Molecular Physics (Lecture Notes in Physics 325), edited by E. Brändas and N. Elander (Springer, Berlin. 1989), pp. 281–311.
3.
J. N. L.
Connor
,
J. Chem. Soc. Faraday Trans.
86
,
1627
(
1990
).
4.
D.
Sokolovski
,
J. N. L.
Connor
, and
G. C.
Schatz
,
J. Chem. Phys.
103
,
5979
(
1995
).
5.
J. B.
Delos
and
C. E.
Carlson
,
Phys. Rev. A
11
,
210
(
1975
).
6.
J. N. L.
Connor
,
W.
Jakubetz
, and
C. V.
Sukumar
,
J. Phys. B
9
,
1783
(
1976
).
7.
C. V.
Sukumar
and
J. N.
Bardsley
,
J. Phys. B
8
,
568
(
1975
).
8.
S.
Bosanac
,
J. Math. Phys.
19
,
789
(
1978
).
9.
P.
Pajunen
,
J. Chem. Phys.
88
,
4268
(
1988
).
10.
S.
Kais
and
G.
Beltrame
,
J. Phys. Chem.
97
,
2453
(
1993
).
11.
N. A.
Kobylinsky
,
S. S.
Stepanov
, and
R. S.
Tutik
,
Phys. Lett.
235B
,
182
(
1990
).
12.
D. Z.
Goodson
,
M.
López-Cabrera
,
D. R.
Herschbach
, and
J. D.
Morgan
III
,
J. Chem. Phys.
97
,
8481
(
1992
).
13.
D. Z.
Goodson
and
D. K.
Watson
,
Phys. Rev. A
48
,
2668
(
1993
).
14.
T. C.
Germann
,
D. R.
Herschbach
, and
B. M.
Boghosian
,
Comput. Phys.
8
,
712
(
1994
).
15.
T. C.
Germann
,
D. R.
Herschbach
,
M.
Dunn
, and
D. K.
Watson
,
Phys. Rev. Lett.
74
,
658
(
1995
).
16.
T. C.
Germann
,
J. Phys. B
28
,
L531
(
1995
).
17.
V. S.
Popov
,
V. D.
Mur
,
A. V.
Shcheblykin
, and
V. M.
Weinberg
,
Phys. Lett.
124A
,
77
(
1987
).
18.
V. M.
Văinberg
,
V. D.
Mur
,
V. S.
Popov
,
A. V.
Sergeev
, and
A. V.
Shcheblykin
,
Theor. Math. Phys.
74
,
269
(
1988
).
19.
V. M.
Văinberg
,
V. S.
Popov
, and
A. V.
Sergeev
,
Sov. Phys. JETP
71
,
470
(
1990
).
20.
S.
Kais
and
D. R.
Herschbach
,
J. Chem. Phys.
98
,
3990
(
1993
).
21.
T. C.
Germann
and
S.
Kais
,
J. Chem. Phys.
99
,
7739
(
1993
).
22.
D. R.
Herrick
and
F. H.
Stillinger
,
Phys. Rev. A
11
,
42
(
1975
).
23.
D. R.
Herrick
,
J. Math. Phys.
16
,
281
(
1975
).
24.
M.
Dunn
,
T. C.
Germann
,
D. Z.
Goodson
,
C. A.
Traynor
,
J. D.
Morgan
III
,
D. K.
Watson
, and
D. R.
Herschbach
,
J. Chem. Phys.
101
,
5987
(
1994
).
25.
J. N. L.
Connor
,
D. C.
Mackay
, and
C. V.
Sukumar
,
J. Phys. B
12
,
L515
(
1979
).
26.
As pointed out to us by Professor J. N. L. Connor (private communication), the “systematic discrepancies in the pole positions” noted by Pajunen (Ref. 9) in comparing with the earlier quantum results of Connor et al., (Ref. 25) are due to a slight difference in the conversion factors used.
This content is only available via PDF.
You do not currently have access to this content.