Static and dynamic equilibrium properties of butane octane, and dodecane films adsorbed on α-Al2O3(0001) at a variety of coverages and temperatures, and the subsequent penetration of such films by 30 molecule water clusters are examined using classical molecular dynamics. Model potential functions are constructed from existing alkane united atom and “simple point charge” model water parameters, experimental alkane desorption energies and other available theoretical information. The adsorbed films exhibit a distinct layering parallel to the surface, and a pronounced densification, reduction in gauche defects and orientational ordering within the innermost layer. Strong surface corrugation allows molecules to rotate relatively freely about their long axes at intermediate temperatures and assists them in orienting their zig-zag planes perpendicular to the surface at lower temperatures. Only butane molecules show any tendency to tilt their long axes out of the first layer toward the second. (H2O)30 clusters are attracted toward the alumina surface and easily penetrate most of the adsorbed alkane films, either by displacing alkane molecules to more distant layers or causing them to pack more closely within existing layers. The molecules in the clusters tend to remain connected during penetration. Kinetic barriers to penetration become increasingly significant for higher alkane coverages, lower temperatures, and longer chains.

1.
C. K.
Narula
,
J. E.
Allison
,
D. R.
Bauer
, and
H. S.
Gandhi
,
Chem. Mater.
8
,
984
(
1996
).
2.
V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, New York, 1994).
3.
R. A. Dickie and S. M. Ward, in Mittal Festchrijft, edited by W. V. van Ooij and H. Anderson, Jr. (VSP, Utrecht, 1997), p. 1.
4.
M.
Debski
,
M. E. R.
Shanahan
, and
J.
Schultz
,
Int. J. Adhesion Adhesives
6
,
145
(
1986
).
5.
V. V.
Arslanov
and
W.
Funke
,
Prog. Organic Coatings
15
,
355
(
1988
).
6.
A.
Stralin
and
T.
Hjertberg
,
J. Adhesion Sci. Technol.
7
,
1211
(
1993
).
7.
J. W.
Holubka
,
J. E.
de Vries
, and
R. A.
Dickie
,
Ind. Eng. Chem. Prod. Res. Dev.
23
,
63
(
1984
).
8.
A. J. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman and Hall, London, 1987).
9.
G. D.
Davis
,
Surf. Interface Anal.
17
,
939
(
1991
).
10.
D. H. Buckley, in Surface Effects in Adhesion, Friction, Wear, and Lubrication, edited by D. Scott (Elsevier, New York, 1981).
11.
K. Wefers and C. Misra, “Oxides and Hydroxides of Aluminum,” Alcoa Technical Paper No. 19, (revised) Alcoa Laboratories, St. Louis, 1987.
12.
M.
Causà
,
R.
Dovesi
,
C.
Pisani
, and
C.
Roetti
,
Surf. Sci.
215
,
259
(
1989
).
13.
W. C.
Mackrodt
,
Philos. Trans. R. Soc. (London) A
341
,
301
(
1992
).
14.
J.
Guo
,
D. E.
Ellis
, and
D. J.
Lam
,
Phys. Rev. B
45
,
13647
(
1992
).
15.
I.
Manassidis
,
A.
De Vita
, and
M. J.
Gillan
,
Surf. Sci. Lett.
285
,
6517
(
1993
).
16.
I.
Manassidis
and
M. J.
Gillan
,
J. Am. Ceram. Soc.
77
,
335
(
1994
).
17.
F. H.
Streitz
and
J. W.
Mintmire
,
Thin Solid Films
235
,
179
(
1994
).
18.
K.
Konstadinidis
,
B.
Thakkar
,
A.
Chakraborty
,
L. W.
Potts
,
R.
Tannenbaum
,
M.
Tirrell
, and
J. F.
Evans
,
Langmuir
8
,
1307
(
1992
).
19.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331.
20.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, III
, and
W. M.
Schiff
,
J. Am. Chem. Soc.
114
,
10024
(
1992
).
21.
S.
Balasubramanian
,
M. L.
Klein
, and
J. I.
Siepmann
,
J. Chem. Phys.
103
,
3184
(
1995
).
22.
R. M.
Slayton
,
C. M.
Aubuchon
,
T. L.
Camis
,
A. R.
Noble
, and
N. J.
Tro
,
J. Phys. Chem.
99
,
2151
(
1995
).
23.
The program Cerius2™ was developed by Molecular Simulations Inc.
24.
T. K.
Xia
,
J.
Ouyang
,
M. W.
Ribansky
, and
U.
Landman
,
Phys. Rev. Lett.
69
,
1967
(
1992
).
25.
T. K.
Xia
and
U.
Landman
,
Science
261
,
1310
(
1993
).
26.
R.
Hentschke
,
B. L.
Schürmann
, and
J. P.
Rabe
,
J. Chem. Phys.
96
,
6213
(
1992
).
27.
S.
Gupta
,
D. C.
Koopman
,
G. B.
Westermann-Clark
, and
I. A.
Bitsanis
,
J. Chem. Phys.
100
,
8444
(
1994
).
28.
D. C.
Koopman
,
S.
Gupta
,
R. K.
Ballamudi
,
G. B.
Westermann-Clark
, and
I. A.
Bitsanis
,
Chem. Eng. Sci.
49
,
2907
(
1994
).
29.
P. A.
Thiel
and
T. E.
Madey
,
Surf. Sci. Rep.
7
,
211
(
1987
).
30.
B. G.
Frederick
,
G.
Apai
, and
T. N.
Rhodin
,
Surf. Sci.
244
,
67
(
1991
).
31.
V.
Coustet
and
J.
Jupille
,
Surf. Interface Anal.
22
,
280
(
1994
).
32.
C. A.
Scamehorn
,
A. C.
Hess
, and
M. I.
McCarthy
,
J. Chem. Phys.
99
,
2786
(
1993
).
33.
W.
Langel
and
M.
Parrinello
,
Phys. Rev. Lett.
73
,
504
(
1994
).
34.
M. J.
Stirniman
,
C.
Huang
,
R. S.
Smith
,
S. A.
Joyce
, and
R. D.
Kay
,
J. Chem. Phys.
105
,
1295
(
1996
).
35.
A.
Bondi
,
Chem. Rev.
52
,
417
(
1953
).
36.
P. W.
Tasker
,
J. Phys. C
12
,
4977
(
1979
).
37.
J. P.
Ryckaert
and
A.
Bellemans
,
Chem. Phys. Lett.
30
,
123
(
1975
).
38.
J. I.
Siepmann
,
S.
Karaborni
, and
B.
Smit
,
Nature
365
,
330
(
1993
).
39.
M.
Mondello
and
G. S.
Grest
,
J. Chem. Phys.
103
,
7156
(
1995
).
40.
W.
Paul
,
D. Y.
Yoon
, and
G. D.
Smith
,
J. Chem. Phys.
103
,
1702
(
1995
).
41.
F. Y.
Hansen
and
H.
Taub
,
Phys. Rev. Lett.
69
,
652
(
1992
).
42.
F. Y.
Hansen
,
J. C.
Newton
, and
H.
Taub
,
J. Chem. Phys.
98
,
4128
(
1993
).
43.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comp. Phys.
23
,
327
(
1977
).
44.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
45.
E. C.
Meng
and
P. A.
Kollman
,
J. Phys. Chem.
100
,
11460
(
1996
).
46.
Y.-N.
Xu
and
W. Y.
Ching
,
Phys. Rev. B
43
,
4461
(
1991
).
47.
L. J.
Alvarez
,
J. F.
Sanz
,
M. J.
Capitan
, and
J. A.
Odriozola
,
Chem. Phys. Lett.
192
,
463
(
1997
).
48.
S.
Nosć
,
J. Chem. Phys.
81
,
511
(
1984
).
49.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
50.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
51.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
52.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Di Nola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
53.
N.
Karasawa
and
W. A.
Goddard
, III
,
J. Phys. Chem.
93
,
7320
(
1989
).
54.
R. C. Weast, Editor, Handbook of Chemistry and Physics, 53rd ed. (Chemical Rubber Co., Cleveland, 1972).
55.
Y.
Zhang
,
R. M.
Venable
, and
R. W.
Pastor
,
J. Phys. Chem.
100
,
2652
(
1996
).
56.
D.
Michael
and
I. J.
Benjamin
,
J. Phys. Chem.
99
,
1530
(
1995
).
57.
P. E.
Rouse
,
J. Phys. Chem.
21
,
1273
(
1953
).
58.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
59.
J.
Hautman
and
M. L.
Klein
,
Phys. Rev. Lett.
67
,
1763
(
1991
).
60.
W.
Mar
,
J.
Hautman
, and
M. L.
Klein
,
Comp. Mater. Sci.
3
,
481
(
1995
).
61.
C. F.
Fan
and
T.
Cagin
,
J. Chem. Phys.
103
,
9053
(
1995
).
62.
A.
Delville
,
J. Phys. Chem.
99
,
2033
(
1995
).
63.
M. I.
McCarthy
,
G. K.
Schenter
,
G. A.
Scamehorn
, and
J. B.
Nicholas
,
J. Phys. Chem.
100
,
16989
(
1996
).
64.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
72
,
238
(
1994
).
65.
Y.
Zhang
,
S. E.
Feller
,
B. R.
Brooks
, and
R. W.
Pastor
,
J. Chem. Phys.
103
,
10252
(
1995
).
66.
F.
Zhou
and
K.
Schulten
,
J. Phys. Chem.
99
,
2194
(
1995
).
67.
J. A.
Polta
,
D. K.
Flynn
, and
P. A.
Thiel
,
J. Catal.
99
,
88
(
1986
).
68.
M.
Nakazawa
and
G.
Somorjai
,
Appl. Surf. Sci.
68
,
539
(
1993
).
69.
J. W.
Holubka
and
J. C.
Ball
,
J. Adhesion Sci. Technol.
4
,
443
(
1990
).
70.
M. S.
Sennett
,
S. E.
Wentworth
, and
A. J.
Kinloch
,
J. Adhesion
54
,
23
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.