We report accurate ground state energies and structural properties for small clusters of 4He computed with the diffusion quantum Monte Carlo (DMC) method combined with high quality trial wave functions and using the recent analytical pair potential of Tang, Toennies, and Yiu [Phys. Rev. Lett. 74, 1546 (1995)]. Calculations based on the older HFD-B(He) potential are reported for comparison. The clusters are found to be extremely floppy and to be characterized by very diffuse wave functions. The DMC results for 4He2 and 4He3 are in excellent agreement with other calculations using conventional methods. 4He3 is found to have a noticeable contribution from nearly linear geometries. The internal structure of the clusters is described by a three particle correlation function which reveals a significantly non-spherical internal cluster structure. The energies for all cluster sizes are found to be slightly higher than those obtained with the HFD-B(He) pair potential. Exploratory calculations on the helium trimer indicate that the effects of three body interactions do not exceed the uncertainty margin provided by different state of the art pair potentials.

1.
J. P. Toennies, in Proceedings of the International School of Physics “Enrico Fermi” 1988, “The chemical physics of atomic and molecular clusters” (North-Holland, Amsterdam, 1990), p. 597.
2.
K. B.
Whaley
,
Int. Rev. Phys. Chem.
13
,
41
(
1994
).
3.
A. R.
Janzen
and
R. A.
Aziz
,
J. Chem. Phys.
103
,
9626
(
1995
).
4.
F.
Luo
,
G. C.
McBane
,
G.
Kim
,
C. F.
Giese
, and
R. W.
Gentry
,
J. Chem. Phys.
98
,
3564
(
1993
).
5.
W.
Schöllkopf
and
J. P.
Toennies
,
Science
266
,
1345
(
1994
).
6.
W.
Schöllkopf
and
J. P.
Toennies
,
J. Chem. Phys.
104
,
1155
(
1996
).
7.
V.
Efimov
,
Phys. Lett. B
33
,
563
(
1970
).
8.
T.
Cornelius
and
W.
Glöckle
,
J. Chem. Phys.
85
,
3906
(
1986
).
9.
D. V.
Fedorov
and
A. S.
Jensen
,
Phys. Rev. Lett.
71
,
4103
(
1993
).
10.
B. D.
Esry
,
C. H.
Greene
,
Y.
Zhou
, and
C. D.
Lin
,
J. Phys. B
29
,
L51
(
1996
).
11.
B. D.
Esry
,
C. D.
Lin
, and
C. H.
Greene
,
Phys. Rev. A
54
,
394
(
1996
).
12.
K. T.
Tang
,
J. P.
Toennies
, and
C. L.
Yiu
,
Phys. Rev. Lett.
74
,
1546
(
1995
).
13.
V. R.
Pandharipande
,
S. C.
Pieper
, and
R. B.
Wiringa
,
Phys. Rev. B
34
,
4571
(
1986
).
14.
B. H.
Wells
and
S.
Wilson
,
Mol. Phys.
55
,
199
(
1985
).
15.
C. A.
Parish
and
C. E.
Dykstra
,
J. Chem. Phys.
98
,
437
(
1993
).
16.
C. A.
Parish
and
C. E.
Dykstra
,
J. Chem. Phys.
101
,
7618
(
1994
).
17.
A.
Bhattacharya
and
J. B.
Anderson
,
J. Chem. Phys.
100
,
8999
(
1994
).
18.
M. J.
Cohen
and
J. N.
Murrell
,
Chem. Phys. Lett.
260
,
371
(
1996
).
19.
K. T.
Tang
,
J. M.
Norbeck
, and
P. R.
Certain
,
J. Chem. Phys.
64
,
3063
(
1976
).
20.
J. M.
Standard
and
P. R.
Certain
,
J. Chem. Phys.
83
,
3002
(
1985
).
21.
A.
Kumar
and
W.
Meath
,
Mol. Phys.
54
,
823
(
1985
).
22.
B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds, Monte Carlo Methods in ab initio Quantum Chemistry (World Scientific, Singapore, 1994).
23.
E. W.
Schmid
,
J.
Schwager
,
Y. C.
Tang
, and
R. C.
Herndon
,
Physica
31
,
1143
(
1965
).
24.
V. R.
Pandharipande
et al.,
Phys. Rev. Lett.
50
,
1676
(
1983
).
25.
R.
Melzer
and
J. G.
Zabolitzky
,
J. Phys. A: Math. Gen.
17
,
L565
(
1984
).
26.
J.
Al-Khalili
,
Phys. World
9
,
33
(
1996
).
27.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
28.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
, Jr.
,
J. Chem. Phys.
77
,
5593
(
1982
).
29.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
,
J. Chem. Phys.
99
,
2865
(
1993
).
30.
R. N.
Barnett
and
K. B.
Whaley
,
Phys. Rev. A
47
,
4082
(
1993
).
31.
S. W.
Rick
,
D. L.
Lynch
, and
J. D.
Doll
,
J. Chem. Phys.
95
,
3506
(
1991
).
32.
S. W.
Rick
and
J. D.
Doll
,
Chem. Phys. Lett.
188
,
149
(
1992
).
33.
Z.
Sun
,
W. A.
Lester
, Jr.
, and
B. L.
Hammond
,
J. Chem. Phys.
97
,
7585
(
1992
).
34.
C. J.
Umrigar
,
K. G.
Wilson
, and
J. W.
Wilkins
,
Phys. Rev. Lett.
60
,
1719
(
1988
).
35.
A.
Mushinski
and
M. P.
Nightingale
,
J. Chem. Phys.
101
,
8831
(
1994
).
36.
M. H.
Kalos
,
J. Comput. Phys.
2
,
257
(
1967
).
37.
R. N.
Barnett
,
P. J.
Reynolds
, and
W. A.
Lester
, Jr.
,
J. Comput. Phys.
96
,
258
(
1991
).
38.
S.
Kirkpatrick
and
E. P.
Stoll
,
J. Comput. Phys.
40
,
517
(
1981
).
39.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992).
40.
D.
Blume
,
M.
Lewerenz
,
F.
Huisken
, and
M.
Kaloudis
,
J. Chem. Phys.
105
,
8666
(
1996
).
41.
R. A.
Aziz
,
F. R.
McCourt
, and
C. C. K.
Wong
,
Mol. Phys.
61
,
1487
(
1987
).
42.
H. Kamada and W. Glöckle (private communication).
43.
M. V.
Ramakrishna
and
K. B.
Whaley
,
J. Chem. Phys.
93
,
6738
(
1990
).
44.
M.
Lewerenz
,
J. Chem. Phys.
104
,
1028
(
1996
).
45.
D. Blume, M. Lewerenz and M. Schinacher (unpublished).
46.
P. W.
Anderson
,
Phys. Lett.
29A
,
563
(
1968
).
47.
U. Kleinekathöfer, K. T. Tang, J. P. Toennies and C. L. Yiu (unpublished).
48.
B. M.
Axilrod
and
E.
Teller
,
J. Chem. Phys.
11
,
299
(
1943
).
49.
R. J.
Wheatley
,
Mol. Phys.
84
,
899
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.