For an electrochemical system with a nonvanishing relaxation time we obtain a generalized Warburg impedance from a hyperbolic diffusion equation. The generalized Warburg impedance determined in this way presents a slight positive curvature in the complex plane with smaller imaginary value at high frequencies.

1.
E.
Warburg
,
Annu. Phys. Chem.
67
,
493
(
1899
).
2.
J. R. MacDonald, Impedance Espectroscopy (Wiley, New York, 1987).
3.
J. R.
Ramos-Barrado
,
J.
Benavente
,
S.
Bruque
, and
M.
Martínez
,
J. Colloid Interface Sci.
170
,
550
(
1995
).
4.
G. Lebon and M. S. Bourkary, Lectures Notes in Physics 253 (Springer, Berlin, 1989).
5.
R. E.
Nettleton
and
S. L.
Sobolev
,
J. Non-Equil. Thermodyn.
20
,
205
(
1995
).
6.
J. M.
Kincaid
,
Phys. Rev. Lett.
74
,
2985
(
1995
).
7.
L. S.
Garcia-Colin
and
F. J.
Uribe
,
J. Non-Equil. Thermodyn.
16
,
89
(
1991
).
8.
I. Müller, Thermodynamics (Pitman, London, 1985).
9.
J. R.
Ramos-Barrado
and
P.
Galán Montenegro
,
Phys. Lett. A
115
,
426
(
1986
).
10.
J. R.
Ramos-Barrado
and
P.
Galán Montenegro
,
Phys. Lett. A
128
,
400
(
1988
).
11.
P.
Vernotte
,
C. R. Acad. Sci. Paris
246
,
3154
(
1958
).
12.
D.
Jou
,
J. M.
Rubi
, and
J.
Casas-Vazquez
,
J. Phys. A
12
,
2515
(
1979
).
13.
C.
Cattaneo
,
Atti dei Seminario Matematico e Fisico della Universitá di Modena
3
,
83
(
1948
).
14.
I. H. Sneddon, The Use of Integral Transforms (McGraw-Hill, New York, 1972).
This content is only available via PDF.
You do not currently have access to this content.