For an electrochemical system with a nonvanishing relaxation time we obtain a generalized Warburg impedance from a hyperbolic diffusion equation. The generalized Warburg impedance determined in this way presents a slight positive curvature in the complex plane with smaller imaginary value at high frequencies.
REFERENCES
1.
2.
J. R. MacDonald, Impedance Espectroscopy (Wiley, New York, 1987).
3.
J. R.
Ramos-Barrado
, J.
Benavente
, S.
Bruque
, and M.
Martínez
, J. Colloid Interface Sci.
170
, 550
(1995
).4.
G. Lebon and M. S. Bourkary, Lectures Notes in Physics 253 (Springer, Berlin, 1989).
5.
6.
7.
8.
I. Müller, Thermodynamics (Pitman, London, 1985).
9.
J. R.
Ramos-Barrado
and P.
Galán Montenegro
, Phys. Lett. A
115
, 426
(1986
).10.
J. R.
Ramos-Barrado
and P.
Galán Montenegro
, Phys. Lett. A
128
, 400
(1988
).11.
12.
D.
Jou
, J. M.
Rubi
, and J.
Casas-Vazquez
, J. Phys. A
12
, 2515
(1979
).13.
C.
Cattaneo
, Atti dei Seminario Matematico e Fisico della Universitá di Modena
3
, 83
(1948
).14.
I. H. Sneddon, The Use of Integral Transforms (McGraw-Hill, New York, 1972).
This content is only available via PDF.
© 1996 American Institute of Physics.
1996
American Institute of Physics
You do not currently have access to this content.