We report results of theoretical calculations for the interaction between two isolated, structureless spherical macroparticles immersed in aqueous electrolytes comprising waterlike molecules (hard spheres embedded with point dipoles and tetrahedral quadrupoles), 1:1 cations and anions (the diameter of cations is equal to that of anions). The reference hypernetted‐chain (RHNC) theory with hard‐sphere bridge functions is employed in the calculations. The fluid structure and the potential of mean force scaled by dS/(πdM) (dS and dM denote the solvent and macroparticle diameters, respectively) converge to limiting behaviors with increasing dM as long as the surface charge density of the macroparticle is kept constant. The qualitative aspects of the conclusions are not altered even when dM is set at 10dS. The interaction between neutral macroparticles in pure water is characterized by strong, short‐range attraction. However, a relatively minor, short‐range repulsive component is added to the interaction when ions are included in water. On the other hand, the presence of apolar particles in water at a trace concentration leads to considerable enhancement of the attraction. Effects of ionic sizes on the interaction between charged macroparticles are substantially large and opposite to those which would be observed using the primitive model. When the size of counterions is sufficiently large and the ionic concentration is sufficiently high, there is a regime where the interaction between highly like‐charged macroparticles is strongly attractive.

1.
J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, New York, 1991).
2.
P.
Attard
,
D.
Wei
,
G. N.
Patey
, and
G. M.
Torrie
,
J. Chem. Phys.
93
,
7360
(
1990
).
3.
P.
Attard
,
D. R.
Bérard
,
C. P.
Ursenbach
, and
G. N.
Patey
,
Phys. Rev. A
44
,
8224
(
1991
).
4.
B. V.
Derjaguin
,
Kolloid Z.
69
,
155
(
1934
).
5.
G. N.
Patey
,
J. Chem. Phys.
72
,
5763
(
1980
).
6.
M.
Lozada-Cassou
,
J. Chem. Phys.
80
,
3344
(
1984
).
7.
M.
Lozada-Cassou
and
E.
Diaz-Herrera
,
J. Chem. Phys.
93
,
1386
(
1990
).
8.
R.
Kjellander
,
S.
Marcelja
,
R. M.
Pashley
, and
J. P.
Quirk
,
J. Phys. Chem.
92
,
6489
(
1988
).
9.
R.
Kjellander
,
S.
Marcelja
,
R. M.
Pashley
, and
J. P.
Quirk
,
J. Chem. Phys.
92
,
4399
(
1990
).
10.
P.
Attard
and
S. J.
Miklavic
,
J. Chem. Phys.
99
,
6078
(
1993
).
11.
J. P.
Valleau
,
R.
Ivkov
, and
G. M.
Torrie
,
J. Chem. Phys.
95
,
520
(
1991
).
12.
P. G.
Kusalik
and
G. N.
Patey
,
J. Chem. Phys.
88
,
7715
(
1988
).
13.
P. G.
Kusalik
and
G. N.
Patey
,
Mol. Phys.
65
,
1105
(
1988
).
14.
G. M.
Torrie
,
P. G.
Kusalik
, and
G. N.
Patey
,
J. Chem. Phys.
90
,
4513
(
1989
).
15.
G. M.
Torrie
,
P. G.
Kusalik
, and
G. N.
Patey
,
J. Chem. Phys.
91
,
6367
(
1989
).
16.
M.
Kinoshita
and
D. R.
Bérard
,
J. Comput. Phys.
124
,
230
(
1996
).
17.
L.
Blum
and
A. J.
Torruella
,
J. Chem. Phys.
56
,
303
(
1972
).
18.
L.
Blum
,
J. Chem. Phys.
57
,
1862
(
1972
).
19.
L.
Blum
,
J. Chem. Phys.
58
,
3295
(
1973
).
20.
P. H.
Fries
and
G. N.
Patey
,
J. Chem. Phys.
82
,
429
(
1985
).
21.
A.
Malijevsky
and
S.
Labik
,
Mol. Phys.
60
,
663
(
1987
).
22.
L. L.
Lee
and
D.
Levesque
,
Mol. Phys.
26
,
1351
(
1973
).
23.
P.
Attard
and
G. N.
Patey
,
J. Chem. Phys.
92
,
4970
(
1990
).
24.
Y.
Rosenfeld
and
N. W.
Ashcroft
,
Phys. Rev. A
20
,
1208
(
1979
).
25.
R.
Bacquet
and
P.
Rossky
,
J. Chem. Phys.
79
,
1419
(
1983
).
26.
D. M.
Duh
and
A. D. J.
Haymet
,
J. Chem. Phys.
97
,
7716
(
1992
).
27.
J. M.
Caillol
,
D.
Levesque
, and
J. J.
Weis
,
Mol. Phys.
69
,
199
(
1990
).
28.
G. M.
Torrie
,
A.
Perera
, and
G. N.
Patey
,
Mol. Phys.
67
,
1337
(
1989
).
29.
D. R.
Bérard
and
G. N.
Patey
,
J. Chem. Phys.
95
,
5281
(
1991
).
30.
M.
Kinoshita
and
M.
Harada
,
Mol. Phys.
79
,
145
(
1993
).
31.
M.
Kinoshita
and
M.
Harada
,
Mol. Phys.
74
,
443
(
1991
).
32.
M.
Kinoshita
and
M.
Harada
,
Mol. Phys.
81
,
1473
(
1994
).
33.
D.
Henderson
and
M.
Plischke
,
Proc. R. Soc. London Ser. A
400
,
163
(
1985
).
34.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
).
35.
A.
Malijevsky
,
R.
Pospisil
,
W. R.
Smith
, and
S.
Labik
,
Mol. Phys.
72
,
199
(
1991
).
36.
G. N. Patey, G. M. Torrie, and D. R. Bérard (private communication).
37.
G. M.
Torrie
,
P. G.
Kusalik
, and
G. N.
Patey
,
J. Chem. Phys.
88
,
7826
(
1988
).
38.
M.
Kinoshita
and
F.
Hirata
,
J. Chem. Phys.
104
,
8807
(
1996
).
39.
H. C.
Hamaker
,
Physica
4
,
1058
(
1937
).
40.
B. W.
Ninham
and
V. A.
Parsegian
,
Biophys. J.
10
,
646
(
1970
).
41.
D.
Gingell
and
V. A.
Parsegian
,
J. Theor. Bio.
36
,
41
(
1972
).
42.
D. B.
Hough
and
L. R.
White
,
Adv. Colloid Interface Sci.
14
,
3
(
1980
).
43.
C. Y.
Lee
,
A. J.
McCammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
44.
J. N.
Israelachvili
and
R. M.
Pashley
,
J. Colloid Interface Sci.
98
,
500
(
1984
).
45.
P. M.
Claesson
and
H. K.
Christenson
,
J. Phys. Chem.
92
,
1650
(
1988
).
46.
H. K.
Christenson
and
P. M.
Claesson
,
Science
239
,
390
(
1988
).
47.
D. R.
Bérard
,
P.
Attard
, and
G. N.
Patey
,
J. Chem. Phys.
98
,
7236
(
1993
).
48.
G. M.
Bell
,
S.
Levine
, and
L. N.
McCartney
,
J. Colloid Interface Sci.
33
,
335
(
1970
).
49.
J. E.
Sader
,
S. L.
Carnie
, and
D. Y. C.
Chan
,
J. Colloid Interface Sci.
171
,
46
(
1995
).
50.
M.
Lozada-Cassou
and
D.
Henderson
,
Chem. Phys. Lett.
127
,
392
(
1986
).
51.
F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971), p. 123 ff.
52.
L.
Gulbrand
,
B.
Jönsson
,
H.
Wennerström
, and
Per
Linse
,
J. Chem. Phys.
80
,
2221
(
1984
).
53.
R.
Kjellander
and
S.
Marcelja
,
Chem. Phys. Lett.
112
,
49
(
1984
).
54.
J. E.
Sanchez-Sanchez
and
M.
Lozada-Cassou
,
Chem. Phys. Lett.
190
,
202
(
1992
).
55.
M. Kinoshita, S. Iba, K. Kuwamoto, and M. Harada, J. Chem. Phys. (submitted).
This content is only available via PDF.
You do not currently have access to this content.