A method is presented for determining activation free energies in complex molecular systems. The method relies on knowledge of the minimum energy path and bases the activation free energy calculation on moving along this path from a minimum to a saddle point. Use is made of a local reaction coordinate which describes the advance of the reaction in each segment of the minimum energy path. The activation free energy is formulated as a sum of two terms. The first is due to the change in the local reaction coordinate between the endpoints of each segment of the path. The second is due to the change in direction of the minimum energy path between consecutive segments. Both contributions can be obtained by molecular dynamics simulations with a constraint on the local reaction coordinate. The method is illustrated by applying it to a model potential and to the C7eq to C7ax transition in the alanine dipeptide. It is found that the term due to the change of direction in the reaction path can make a substantial contribution to the activation free energy.

1.
J.
Keck
,
Discuss. Faraday
33
,
173
(
1962
).
2.
For a recent review that includes a wide range of applications, see
J. B.
Anderson
,
Adv. Chem. Phys.
91
,
381
(
1995
).
3.
C. H. Bennett, in Algorithms for Chemical Computation, edited by R. E. Christoferson (Am. Chem. Soc., Washington, D.C., 1977), p. 63.
4.
C. L.
Brooks
III
,
M.
Karplus
, and
B. M.
Pettitt
,
Adv. Chem. Phys.
71
,
1
(
1988
).
5.
S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes (McGraw-Hill, New York, 1941).
6.
P.
Hanggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
7.
E. P.
Wigner
,
Trans. Faraday Soc.
34
,
29
(
1938
).
8.
D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York 1976).
9.
J. P. Valleau and G. M. Torrie, in Statistical Mechanics, Part A edited by B. J. Berne (Plenum, New York, 1977), p. 137.
10.
C.
Pangali
,
M.
Rao
, and
B. J.
Berne
,
J. Chem. Phys.
71
,
2975
(
1979
).
11.
S. H.
Northrup
,
M. R.
Pear
,
C. Y.
Lee
,
J. A.
McCammon
, and
M.
Karplus
,
Proc. Natl. Acad. Sci., USA
79
,
4035
(
1982
).
12.
D. W.
Robertus
,
B. J.
Berne
, and
D.
Chandler
,
J. Chem. Phys.
70
,
3395
(
1979
).
13.
D. J.
Tobias
and
C. L.
Brooks
III
,
Chem. Phys. Lett.
142
,
472
(
1987
).
14.
E. A.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
15.
E.
Paci
,
G.
Ciccotti
,
M.
Ferrario
, and
R.
Kapral
,
Chem. Phys. Lett.
176
,
581
(
1991
).
16.
J. M.
Depaepe
,
J. P.
Ryckaert
,
E.
Paci
, and
G.
Ciccotti
,
Mol. Phys.
79
,
515
(
1993
).
17.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
18.
The term activation free energy used here is different from the standard use (see Ref. 5) and refers to the potential of mean force difference between the dividing surface and the minimum.
19.
J. E.
Straub
,
D. A.
Hsu
, and
B. J.
Berne
,
J. Phys. Chem.
89
,
5188
(
1985
).
20.
B. J.
Gertner
,
K. R.
Wilson
, and
J. T.
Hynes
,
J. Chem. Phys.
90
,
3537
(
1989
).
21.
L. R.
Pratt
,
J. Chem. Phys.
85
,
5045
(
1986
).
22.
A.
Ulitskey
and
R.
Elber
,
J. Chem. Phys.
92
,
1510
(
1990
).
23.
S.
Fischer
and
M.
Karplus
,
Chem. Phys. Lett.
194
,
252
(
1992
).
24.
R.
Elber
,
J. Chem. Phys.
93
,
4312
(
1990
).
25.
T.
Lazaridis
,
D. J.
Tobias
,
C. L.
Brooks
III
, and
M.
Paulaitis
,
J. Chem. Phys.
95
,
7612
(
1991
).
26.
P.
Pechukas
,
Annu. Rev. Phys. Chem.
32
,
159
(
1981
).
27.
J. P.
Ryckaert
and
G.
Ciccotti
,
J. Chem. Phys.
78
,
7368
(
1983
).
28.
C.
Eckart
,
Phys. Rev.
47
,
552
(
1935
).
29.
E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955).
30.
H. M.
Pickett
and
H. L.
Strauss
,
J. Am. Chem. Soc.
92
,
7281
(
1970
).
31.
D. R.
Herschbach
,
H. S.
Johnston
, and
D.
Rapp
,
J. Chem. Phys.
31
,
1652
(
1959
).
32.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford, London, 1989).
33.
S. Fischer Ph.D. thesis, Harvard University 1992; S. Fischer and M. Karplus (unpublished).
34.
B. M.
Pettitt
and
M.
Karplus
,
J. Amer. Chem. Soc.
107
,
1166
(
1985
).
35.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swamintha
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
36.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berensden
,
J. Comput. Phys.
23
,
327
(
1977
).
37.
A. MacKerell and M. Karplus (unpublished).
38.
S.
Fischer
,
S.
Michnick
, and
M.
Karplus
,
Biochem.
32
,
13830
(
1993
).
39.
(a)
B. R.
Gelin
and
M.
Karplus
,
Proc. Natl. Acad. Sci. USA
72
,
2002
(
1975
);
(b)
J. A.
McCammon
and
M.
Karplus
,
76
,
3585
(
1979
); ,
Proc. Natl. Acad. Sci. U.S.A.
(c)
J. A.
McCammon
and
M.
Karplus
,
Biopolym.
19
,
1375
(
1980
).
40.
O. L.
Beveridge
and
F. M.
DiCapua
,
Annu. Rev. Biophys. Biophys. Chem.
18
,
431
(
1989
).
41.
T. P.
Straatsma
and
J. A.
McCammon
,
Annu. Rev. Phys. Chem.
43
,
407
(
1992
).
42.
C. L.
Brooks
III
and
D. A.
Case
,
Chem. Rev.
93
,
2487
(
1993
), and references therein.
43.
J. A.
McCammon
,
P. G.
Wolynes
, and
M.
Karplus
,
Biochem.
18
,
927
(
1979
).
44.
W. F.
van Gunsteren
and
M.
Karplus
,
Macromolecules
15
,
1528
(
1982
).
45.
W. E. Reiher, Ph.D. thesis, Harvard University, 1985.
46.
W. L.
Jorgensen
,
J.
Chandrasekhar
, and
J. P.
Madura
,
J. Chem. Phys.
79
,
926
(
1983
).
47.
R. A.
Loncharich
and
B. R.
Brooks
,
Proteins
6
,
32
(
1989
).
48.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
49.
Further details can be found in the CHARMM program, which can be obtained for a nominal fee by not-for-profit institutions from the CHARMM Development Project, 12 Oxford St., Harvard University, Cambridge, MA 02138. E-mail marci@tammy.harvard.edu
This content is only available via PDF.
You do not currently have access to this content.