The internal rotation of formamide with 0–5 water molecules oriented along the N–C bond has been studied by the full abinitio self‐consistent field theory and using the effective fragment (EFP) method. For each case, the EFP geometries, harmonic vibrational frequencies, rotational barriers, and intrinsic reaction coordinates for the internal rotation are found to be in excellent agreement with their abinitio counterparts. The global energy minimum structures for four and five water complexes are predicted to be formamide bonded to two adjacent waters, with all water molecules in a ring. Probably due to the structural constraints, the complexes containing less than four waters have cyclic structures with the two ends of formamide connected by a sequence of water molecules. The internal rotation barrier of formamide–water complexes increases from 15.3 kcal/mol with no water to 19.0 kcal/mol with four waters and seems to saturate at four to five waters. When electron correlation corrections are added, the estimated internal rotation barrier is ∼20 kcal/mol, in very good agreement with experimental measurements.

1.
See for example, (a)
M.
Szafran
,
M. M.
Karelson
,
A. R.
Katritzky
,
J.
Koput
, and
M. C.
Zerner
,
J. Comp. Chem.
14
,
371
(
1993
);
(b)
D. J.
Giesen
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem.
99
,
7137
(
1995
);
(c)
R.
Bianco
and
J. T.
Hynes
,
J. Chem. Phys.
102
,
7864
(
1995
);
(d)
F. R.
Tortonda
,
J.-L.
Pascual-Ahuir
,
E.
Silla
, and
I.
Tunon
,
J. Phys. Chem.
99
,
12525
(
1995
);
( e)
T. N.
Truong
and
E. V.
Stepanovich
,
J. Chem. Phys.
103
,
3709
(
1995
);
(f)
D. J.
Giesen
,
J. W.
Storer
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
117
,
1057
(
1995
).
2.
See for example, (a)
A.
Warshel
,
J. Phys. Chem.
83
,
1640
(
1979
);
(b)
B. T.
Thole
and
P. T.
Van Duijnen
,
Theor. Chim. Acta
55
,
307
(
1980
);
( c)
B. T.
Thole
and
P. T.
Van Duijnen
,
Chem. Phys.
71
,
211
(
1982
);
(d)
U. C.
Singh
and
P. A.
Kollman
,
J. Comp. Chem.
5
,
129
(
1984
);
(e)
A.
Warshel
and
G.
King
,
Chem. Phys. Lett.
121
,
124
(
1985
);
(f)
G.
King
and
A.
Warshel
,
J. Chem. Phys.
91
,
3647
(
1989
);
(g)
M. J.
Field
,
P. A.
Bash
, and
M. J.
Karplus
,
J. Comp. Chem.
11
,
700
(
1990
);
(h)
V.
Luzhkov
and
A.
Warshel
,
J. Am. Chem. Soc.
113
,
4491
(
1991
);
(i)
J.
Gao
,
J. Am. Chem. Soc.
116
,
1563
(
1994
); ,
J. Am. Chem. Soc.
(j)
M. A.
Thompson
,
E. D.
Glendening
, and
D. F.
Feller
,
J. Phys. Chem.
98
,
10465
(
1994
);
(k)
F.
Maseras
and
K.
Morokuma
,
J. Comp. Chem.
16
,
1170
(
1995
);
(l)
J.
Gao
,
J. Phys. Chem.
96
,
537
(
1992
);
( m)
H.
Liu
,
F.
Müller-Plathe
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
101
,
1722
(
1994
);
(n)
A. H.
de Vries
,
P.
Th. van Duijnen
,
A. H.
Juffer
,
J. A. C.
Rullmann
,
J. P.
Dijkman
,
H.
Merenga
, and
B. T.
Thole
,
J. Comput. Chem.
16
,
37
(
1995
).
3.
( a) T. N. Truong and E. V. Stefanovich, Chem. Phys. Lett. (in press);
(b)
M. A.
Thompson
,
J. Phys. Chem.
100
,
14492
(
1996
).
4.
Z.
Luzhkov
and
A.
Warshel
,
J. Am. Chem. Soc.
113
,
4491
(
1991
).
5.
J. H. Jensen, P. N. Day, M. S. Gordon, H. Basch, D. Cohen, D. R. Garmer, M. Krauss, and W. J. Stevens, in Modeling the Hydrogen Bond, edited by Douglas A. Smith (ACS Symposium Series 569, 1994), p. 139.
6.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
Simon P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D. R.
Garmer
,
H.
Basch
, and
D.
Cohen
,
J. Chem. Phys.
105
,
1968
(
1996
).
7.
(a)
A. J.
Stone
,
Chem. Phys. Lett.
83
,
233
(
1981
);
(b)
A. J.
Stone
and
M.
Alderton
,
Mol. Phys.
56
,
1047
(
1985
).
8.
D. R.
Garmer
and
W. J.
Stevens
,
J. Phys. Chem.
93
,
8263
(
1989
).
9.
Note that αxyl in Eq. (5b) is not symmetric in the general case of multiple fragments. However, it is found via numeric tests that symmetrization of the polarizability tensor by averaging αxyl and αxyl has little effect on either the energy or the gradient.
10.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comp. Chem.
14
,
1347
(
1993
).
11.
P.
Culot
,
G.
Dive
,
V. H.
Nguyen
, and
J. M.
Ghuysen
,
Theor. Chim. Acta
82
,
189
(
1992
);
T.
Helgaker
,
Chem. Phys. Lett
182
,
503
(
1991
).
12.
A.
Banerjee
,
N.
Adams
,
J.
Simons
, and
R.
Shepard
,
J. Phys. Chem.
89
,
52
(
1985
).
13.
H. F.
King
,
J. Phys. Chem.
94
,
5617
(
1990
).
14.
(a)
C. G.
Broyden
,
J. Inst. Math. Appl.
6
,
76
(
1970
);
(b)
R.
Fletcher
,
Comput. J.
13
,
317
(
1970
);
(c)
D.
Goldfarb
,
Math. Comput.
24
,
23
(
1970
);
(d)
D. F.
Shanno
,
Math. Comput.
24
,
647
(
1970
).,
Math. Comput.
15.
M. J. D.
Powell
,
Math. Prog.
1
,
26
(
1971
).
16.
H. B.
Schlegel
,
Theor. Chim. Acta
66
,
333
(
1984
).
17.
T. H.
Fischer
and
J.
Almlöf
,
J. Phys. Chem.
96
,
9768
(
1992
).
18.
K.
Fukui
,
Acc. Chem. Res.
14
,
363
(
1981
).
19.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Phys. Chem.
94
,
5523
(
1990
).
20.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
21.
T. H. Dunning and P. J. Hay, in Modern Theoretical Chemistry, Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3.
22.
P. G.
Jasien
,
W. J.
Stevens
, and
M.
Krauss
,
J. Mol. Struct.
139
,
197
(
1986
).
23.
J. E.
Boggs
and
Z.
Liu
,
J. Comp. Chem
6
,
46
(
1985
).
24.
W-C
Wang
,
J. C.
Facelli
, and
J.
Simons
,
Int. J. Quantum Chem.
45
,
123
(
1993
).
25.
T.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
26.
C. C.
Costain
and
J. M.
Dowling
,
J. Chem. Phys.
32
,
158
(
1960
).
27.
E.
Hirota
,
R.
Sugisaki
,
C. J.
Neilsen
, and
G. O.
Sorensen
,
J. Mol. Spectrosc.
49
,
251
(
1974
).
28.
C.
Moller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
29.
See for example, Modeling the Hydrogen Bond, edited by Douglas A. Smith (ACS Symposium Series 569, 1994).
30.
R.
Krishnan
and
J. A.
Pople
,
Int. J. Quantum Chem.
14
,
91
(
1978
).
31.
H.
Kamei
,
Bull. Chem. Soc. Jpn.
41
,
2269
(
1968
).
32.
See AIP Document No. PAPS JCPSA-105-11081-10 for 10 pages of Cartesian coordinates and vibrational frequencies.
Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard, Woodbury, New York 11797-2999. Fax: 516-576-2223, e-mail: paps@aip.org. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.