A rigorous theory was further extended for the reversing‐pulse electric birefringence (RPEB) of the ionized polyion of cylindrical symmetry with the permanent dipole moment μ3, in addition to two previously considered electric dipole moments, i.e., the root‐mean‐square‐average moment 〈m231/2 resulting from the fluctuation of ion–atmosphere along the longitudinal (3)axis of the polyion with a single relaxation time τI, as originally proposed by Szabo etal. [J. Chem. Phys. 85, 7472 (1986)], and the electronic moment from the intrinsic covalent polarizability anisotropy Δα between the longitudinal and transverse axes of the polyion by Yamaoka etal. [J. Chem. Phys. 101, 1625 (1994)]. The extended RPEB expressions were derived with three electric and hydrodynamic parameters (p23/kTΔα, q=〈m231/2/kTΔα, and τ*=τIθ) in the Kerr‐law region. Calculated with appropriate values to these parameters, the theoretical curves show such new features that either maxima or minima appear in the buildup and reverse processes. The present theory was used to analyze a set of experimental RPEB signals of poly(α,L‐glutamic acid) in helical conformation in methanol and in methanol–water containing sodium hydroxide. By fitting the observed data to theoretical curves, the contribution of 〈m231/2 was shown to surpass that of μ3 for the same helical sample that was partially ionized by neutralization with sodium hydroxide.

1.
Molecular Electro-Optics, Part 1 and Part 2, edited by C. T. O’Konski (Marcel Dekker, New York, 1976 and 1978).
2.
P. S. Stoylov, Colloid Electro-Optics (Academic, New York, 1991).
3.
Colloid and Molecular Electro-Optics 1991, edited by B. R. Jennings and P. S. Stoylov (IOP, Bristol, 1992).
4.
E. Fredericq and C. Houssier, Electric Dichroism and Electric Birefringence (Clarendon, Oxford, 1973).
5.
E.
Charney
,
Q. Rev. Biophys.
21
,
1
(
1988
).
6.
C. T.
O’Konski
and
A. J.
Haltner
,
J. Am. Chem. Soc.
78
,
3604
(
1956
).
7.
C. T.
O’Konski
and
R. M.
Pytkowicz
,
J. Am. Chem. Soc.
79
,
4815
(
1957
).
8.
I.
Tinoco
, Jr.
and
K.
Yamaoka
,
J. Phys. Chem.
63
,
423
(
1959
).
9.
A.
Szabo
,
M.
Haleem
, and
D.
Eden
,
J. Chem. Phys.
85
,
7472
(
1986
).
10.
K.
Yamaoka
,
M.
Tanigawa
, and
R.
Sasai
,
J. Chem. Phys.
101
,
1625
(
1994
).
11.
K.
Yamaoka
,
T.
Ichibakase
,
K.
Ueda
, and
K.
Matsuda
,
J. Am. Chem. Soc.
102
,
5109
(
1980
).
12.
K.
Yoshioka
,
M.
Fujimori
,
K.
Yamaoka
, and
K.
Ueda
,
Int. J. Macromol.
4
,
55
(
1982
).
13.
K.
Yamaoka
,
I.
Kosako
, and
K.
Gekko
,
Polymer. J.
21
,
107
(
1989
).
14.
K.
Yamaoka
,
M.
Kimura
, and
M.
Okada
,
Bull. Chem. Soc. Jpn.
65
,
129
(
1992
).
15.
K.
Yamaoka
,
S.
Yamamoto
, and
I.
Kosako
,
Polymer. J.
19
,
951
(
1987
).
16.
K.
Yamaoka
,
S.
Yamamoto
, and
K.
Ueda
,
J. Phys. Chem.
89
,
5192
(
1985
).
17.
K.
Yamaoka
and
K.
Ueda
,
J. Phys. Chem.
86
,
406
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.