We present the results of a new perturbation calculation in polymer statistics which starts from a ground state that already correctly predicts the long chain length behaviour of the mean square end‐to‐end distance 〈R2N〉, namely, the solution to the two dimensional (2D) Edwards model. The 〈R2N〉 thus calculated is shown to be convergent in N, the number of steps in the chain, in contrast to previous methods which start from the free random walk solution. This allows us to calculate a new value for the leading correction‐to‐scaling exponent Δ. Writing 〈R2N〉=AN(1+BN−Δ+CN−1+...), where ν=3/4 in 2D, our result shows that Δ=1/2. This value is also supported by an analysis of 2D self‐avoiding walks on the continuum.

1.
F. J.
Wegner
,
Phys. Rev. B
5
,
4529
(
1972
).
2.
B.
Nienhuis
,
Phys. Rev. Lett.
49
,
1062
(
1982
).
3.
A. J.
Guttmann
,
J. Phys. A
20
,
1839
(
1987
).
4.
T.
Ishinabe
,
Phys. Rev. B
39
,
9486
(
1989
).
5.
Z. V.
Djordjevic
,
I.
Majid
,
H. E.
Stanley
, and
R. J.
dos Santos
,
J. Phys. A
16
,
L519
(
1983
).
6.
D. C.
Rapaport
,
J. Phys. A
18
,
L39
(
1985
).
7.
S.
Havlin
and
D.
Ben-Avraham
,
Phys. Rev. A
27
,
2759
(
1983
).
8.
J. W.
Lyklema
and
K.
Kremer
,
Phys. Rev. B
31
,
3182
(
1985
).
9.
V.
Privman
,
Physica A
123
,
428
(
1984
).
10.
G. A.
Baker
,Jr.
,
B. G.
Nickel
,
M. S.
Green
, and
D. I.
Meiron
,
Phys. Rev. Lett.
36
,
1351
(
1976
);
G. A.
Baker
, Jr.
,
B. G.
Nickel
,
M. S.
Green
, and
D. I.
Meiron
,
Phys. Rev. B
17
,
1365
(
1978
).
11.
H.
Saleur
,
J. Phys. A
20
,
455
(
1987
).
12.
M.
Fixman
,
J. Chem. Phys.
23
,
1656
(
1955
).
13.
M.
Muthukumar
and
B. G.
Nickel
,
J. Chem. Phys.
80
,
5839
(
1984
).
14.
M.
Muthukumar
and
B. G.
Nickel
,
J. Chem. Phys.
86
,
460
(
1987
).
15.
J.
Des Cloizeaux
and
R.
Conte
,
J. Phys. Lett. (Paris)
46
,
L595
(
1985
).
16.
S. F.
Edwards
,
Proc. Phys. Soc.
85
,
613
(
1965
).
17.
K. Huang, Statistical Mechanics (Wiley, New York, 1987).
18.
M.
Fisher
,
J. Chem. Phys.
44
,
616
(
1966
);
J.
des Cloizeaux
,
J. Phys. (Paris)
31
,
715
(
1970
).
19.
M.
Bishop
and
J. H. R.
Clarke
,
J. Chem. Phys.
94
,
3936
(
1991
).
20.
S. R.
Shannon
,
T. C.
Choy
, and
R. J.
Fleming
,
Phys. Rev. B
53
,
2175
(
1996
).
21.
F. W. Wiegel, An Introduction to Path-Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986), p. 44.
22.
S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, Massachusetts, 1976), p. 116.
23.
D. J. Amit, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 1984), p. 189.
24.
J.
Westwater
,
Commun. Math. Phys.
79
,
53
(
1981
).
25.
B. G.
Nickel
,
Macromolecule
24
,
1358
(
1991
).
J. L.
Cardy
and
A. J.
Guttmann
,
J. Phys. A
26
,
2485
(
1993
).
26.
C. M.
Chaves
and
R.
Riera
,
Phys. Rev. B
48
,
16084
(
1993
).
27.
J.
Wang
,
J. Phys. A
22
,
L969
(
1989
).
28.
P. M.
Lam
,
Phys. Rev. B
42
,
4447
(
1990
).
29.
C. A.
Croxton
,
J. Phys. A
19
,
987
(
1986
).
30.
K.
Kremer
,
A.
Baumgärtner
, and
K.
Binder
,
Z. Phys. B
40
,
331
(
1981
).
31.
M. N.
Rosenbluth
and
A. W.
Rosenbluth
,
J. Chem. Phys.
23
,
356
(
1954
).
32.
K. Binder and W. D. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1988), p. 94.
33.
V.
Privman
and
M.
Fisher
,
J. Phys. A
16
,
L295
(
1983
).
34.
M.
Barma
and
M.
Fisher
,
Phys. Rev. Lett.
53
,
1935
(
1984
).
35.
N. Madras and G. Slade, The Self-Avoiding Walk (Birkhäuser, Boston, 1993), p. 19.
36.
This statement requires the approximate equality of the exact amplitudes, α1 and α2, as clearly the “perturbative” (i.e., approximate) amplitudes cancel by virtue of the convergence of Eq. (39) and its 3D equivalent. We are unfortunately not able to prove this at present.
This content is only available via PDF.
You do not currently have access to this content.