The photoinitiated unimolecular decomposition of jet‐cooled HNCO has been studied following S1(1A″)←S0(1A′) excitation near the thresholds of the spin‐allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm−1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260–220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm−1 and the spectrum exhibits structures as narrow as 0.8 cm−1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet‐cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two‐photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm−1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260–230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet‐cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are recommended: ΔH0f(HNCO)=−27.8±0.4 kcal/mol, and ΔH0f(NCO)=30.3±0.4 kcal/mol. These results are in excellent agreement with recent determinations using different experimental techniques.

1.
T. A.
Spiglanin
,
R. A.
Perry
, and
D. W.
Chandler
,
J. Phys. Chem.
90
,
6184
(
1986
).
2.
T. A.
Spiglanin
and
D. W.
Chandler
,
J. Chem. Phys.
87
,
1577
(
1987
).
3.
T. A.
Spiglanin
,
R. A.
Perry
, and
D. W.
Chandler
,
J. Chem. Phys.
87
,
1568
(
1987
);
T. A.
Spiglanin
and
D. W.
Chandler
,
Chem. Phys. Lett.
141
,
428
(
1987
).
4.
J.
Zhang
,
M.
Dulligan
, and
C.
Wittig
,
J. Chem. Phys.
99
,
7446
(
1995
).
5.
(a)
W. S.
Drozdoski
,
A. P.
Baronavski
, and
J. R.
McDonald
,
Chem. Phys. Lett.
64
,
421
(
1979
);
(b)
G. T.
Fujimoto
,
M. E.
Umstead
, and
M. C.
Lin
,
Chem. Phys.
65
,
197
(
1982
).
6.
W. K.
Yi
and
R.
Bersohn
,
Chem. Phys. Lett.
206
,
365
(
1993
).
7.
B.
Bohn
and
F.
Stuhl
,
J. Phys. Chem..
97
,
4891
(
1993
).
8.
R. N.
Dixon
and
G. H.
Kirby
,
Trans. Faraday Soc.
64
,
2002
(
1968
).
9.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
100
,
4498
(
1994
).
10.
A preliminary report is given in: M. Zyrianov, A. Sanov, T. Droz-Georget, and H. Reisler, Roy. Soc. Chem. Faraday Disc. 102, (in press).
11.
M.
Kawasaki
,
Y.
Sato
,
K.
Suto
,
Y.
Matsumi
, and
S. H. S.
Wilson
,
Chem. Phys. Lett.
251
,
67
(
1996
).
12.
S. S. Brown, R. B. Metz, H. L. Berghout, and F. F. Crim (unpublished).
13.
A.
Ogai
,
C. X. W.
Qian
, and
H.
Reisler
,
J. Chem. Phys.
93
,
1107
(
1990
).
14.
P. S. H.
Bolman
,
J. M.
Brown
,
A.
Carrington
,
I.
Kopp
, and
D. A.
Ramsay
,
Proc. R. Soc. London, Ser. A
343
,
17
(
1973
).
15.
R. S.
Ram
and
P. F.
Bernath
,
J. Opt. Soc. Am. B
3
,
1170
(
1986
);
C. R.
Braizer
,
R. S.
Ram
, and
P. F.
Bernath
,
J. Mol. Spec.
120
,
381
(
1986
).
16.
K.
Uno
,
T.
Hikida
,
A.
Hiraya
, and
K.
Shobatake
,
Chem. Phys. Lett.
166
,
475
(
1990
).
17.
M. Zyrianov, A. Sazonov, R. A. Beaudet, and H. Reisler (unpublished).
18.
S. S.
Brown
,
R. B.
Metz
,
H. L.
Berghout
, and
F. F.
Crim
,
J. Phys. Chem.
100
,
7948
(
1996
).
19.
S. S.
Brown
,
H. L.
Berghout
, and
F. F.
Crim
,
J. Chem. Phys.
105
,
8103
(
1996
), preceding paper.
20.
JANAF Thermochemical Tables, 3rd ed. (J. Phys. Chem. Ref. Data, 1985).
21.
D. R.
Cyr
,
R. E.
Continetti
,
R. B.
Metz
,
D. L.
Osborn
, and
D. M.
Neumark
,
J. Chem. Phys.
97
,
4937
(
1992
).
22.
H.
Okabe
,
J. Chem. Phys.
53
,
3507
(
1970
);
Photochemistry of Small Molecules (Wiley-Interscience, New York, 1978).
23.
B. Ruscic (private communication). The recommendation to use the above value of ΔH0f (NH) = 85.6±0.3 is based on a combination of the appearance potentials of NH2+/NH3 and NH+/NH2, which are 15.768±0.004 eV and 17.440±0.005   eV, respectively, and IP(NH2)  = 11.140±0.010  eV and IP(NH) = 13.476±0.002  eV, along with ΔHf0(NH3)=9.31±0.008kcal/mol.
A slightly different value, ΔHf0(NH) 85.3±0.2 kcal/mol, was recommended by Anderson [
W. R.
Anderson
,
J. Phys. Chem.
93
,
530
(
1989
)].
24.
E. S. Medvedev and V. I. Osherov, Radiationless Transitions of Polyatomic Molecules (Springer-Verlag, Berlin, 1995).
25.
S.
Williams
,
J. D.
Tobiason
,
J. R.
Dunlop
, and
E. A.
Rohlfing
,
J. Chem. Phys.
102
,
8342
(
1995
);
J. D.
Tobiason
,
J. R.
Dunlop
, and
E. A.
Rohlfing
,
J. Chem. Phys.
103
,
1448
(
1995
);
D. W.
Neyer
,
X.
Luo
,
P. L.
Houston
, and
I.
Burak
,
J. Chem. Phys.
98
,
5095
(
1993
);
D. W.
Neyer
,
X.
Luo
,
P. L.
Houston
, and
I.
Burak
,
J. Chem. Phys.
102
,
1645
(
1995
).,
J. Chem. Phys.
26.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Weibrecht
,
J. Chem. Phys.
93
,
1472
(
1990
);
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Weibrecht
,
98
,
4297
(
1993
); ,
J. Chem. Phys.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Weibrecht
,
99
,
2271
(
1993
); ,
J. Chem. Phys.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Weibrecht
,
101
,
3618
,
3634
(
1994
).,
J. Chem. Phys.
27.
In these simulations the H–NCO transition state frequencies were assumed to include those of free NCO, i.e., 1290, 2338, 680 cm−1 (C–N and C–O stretches and NCO bend, respectively), and two nearly free rotors corresponding to the H-atom motion perpendicular to the reaction coordinate and the angular momentum associated with the nearly degenerate bend of the NCO skeleton (20cm1 for both). The HN-CO transition state frequencies included the N-H and C-O frequencies (3186 and 2214 cm21, respectively), while three other degrees of freedom (N–CO and HN–C bends and HN–CO relative rotation) were assumed to be rather loose (50, 20, and 20 cm21). The harmonic density of states of HNCO(S0) near the opening of channel (2) used in the calculations is ;600 per cm21, surely a gross underestimation. However, under the assumption of complete Intramolecular Vibrational Redistribution (IVR) this parameter does not affect the NH/NCO channel ratio, as derived from the RRKM theory.
28.
A. M. Mebel, A. Luna, M. C. Lin, and K. Morokuma, J. Chem. Phys. (in press).
29.
The weak coupling may be a result of the large energy gap between S0 and S1which gives rise to unfavorable Franck–Condon overlap factors.
30.
W.
Hack
and
K.
Rathmann
,
J. Phys. Chem.
94
,
3636
(
1990
).
31.
W.-H.
Fang
,
X.-Z.
You
, and
Z.
Yin
,
Chem. Phys. Lett.
238
,
236
(
1995
).
32.
M. H.
Alexander
,
H.-J.
Werner
, and
P. J.
Dagdigian
,
J. Chem. Phys.
89
,
1388
(
1989
);
M. H.
Alexander
,
H.-J.
Werner
,
T.
Hemmer
, and
P. J.
Knowles
,
J. Chem. Phys.
93
,
3307
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.