In many applications, it is desirable to control interfacial properties by employing adsorbed polymer layers. In this work, we study the adsorption of random heteropolymers and find a rich surface phase diagram that suggest ways in which the properties of the adsorbed layers can be controlled rather precisely by manipulating the physical conditions. Specifically, we present a comprehensive field‐theoretic analysis of the surface phase diagram of a solution of random heteropolymers interacting with a chemically homogeneous solid surface, and find many surface transitions that may be exploited in applications. The different types of polymer segments interact with the solid surface in arbitrarily different ways. Our analysis, wherein a replica method is employed to average over the quenched sequence fluctuations, allows us to obtain the surface free energy functionals that show that our problem partially resembles a semi‐infinite Ising spin system. Thus, akin to the Ising system, the phase diagram exhibits exotic surface transitions. In the infinitely dilute limit we find four ‘‘massless’’ transition lines: the ordinary (OT), the surface (ST), the extraordinary (ET), and the special (SPT) transition. At finite bulk solution concentration, we find two transitions; viz. the OT and the adsorption–depletion (ADT) transitions. The nature of the critical points that reside on the transition lines are analyzed, and the physical meaning of each of the surface transitions is elucidated. Our results are related to experiments and it is shown that the interesting behavior that random heteropolymers exhibit near surfaces is due to the quenched sequence fluctuations.

1.
G. Odian, Principles of Polymerization (Wiley, New York, 1981), p. 495.
2.
E. I.
Shakhnovich
and
A. M.
Gutin
,
J. Phys. (Fr)
50
,
1843
(
1989
).
3.
C.
Qian
and
L.
Kholodenko
,
J. Chem. Phys.
89
(
8
),
5273
(
1988
).
4.
C. D.
Sfatos
,
A. M.
Gutin
, and
E. I.
Shaknovitch
,
Phys. Rev. E
48
,
465
(
1993
).
5.
D. A.
Dolgikh
,
R. T.
Gilmanshin
,
E. U.
Brazhnikov
,
U. E.
Bychokova
,
G. U.
Semisotnov
,
S.
Yu Veniaminov
, and
O. B.
Ptitsyn
,
FEBS Lett.
136
,
311
(
1981
).
6.
W.
Norde
and
A. C. I.
Anusien
,
Colloid Surf.
50
,
73
(
1992
).
7.
D. I.
Lyman
,
K.
Knutson
,
B.
McNeil
, and
K.
Shilatani
,
Trans. Am. Soc. Artif. Int. Organs
21
,
49
(
1975
).
8.
F. N.
Fu
,
M. P.
Fuller
, and
B. R.
Singh
,
App. Spectrosc.
47
,
989
(
1993
).
9.
E. I.
Shaknovitch
and
A. U.
Finkelstein
,
Biopolymers
28
,
1667
(
1989
).
10.
E. I.
Shaknovitch
and
A. M.
Gutin
,
J. Phys. A: Math. Gen.
22
,
1647
(
1989
).
11.
G. H.
Fredrickson
and
S. T.
Milner
,
Phys. Rev. Lett.
67
,
835
(
1991
).
12.
V. S.
Pande
,
A.
Yu. Grosberg
, and
T.
Tanaka
,
Phys. Rev. E
51
,
4
(
1995
).
13.
G. H.
Fredrickson
,
S. T.
Milner
, and
L.
Leibler
,
Macromolecules
25
,
6341
(
1992
).
14.
J. D.
Honeycutt
and
D.
Thirumalai
Biopolymers
32
,
65
(
1992
).
15.
T.
Garel
and
H.
Orland
,
Europhys. Lett.
6
,
307
,
597
(
1988
).
16.
P. L.
Privalov
,
Adv. Prot. Chem.
33
,
167
(
1979
).
17.
P. L. Privalov, in Protein Folding, edited by Creighton T. E. (W. H. Freeman and Coupart, New York, 1992), p. 127.
18.
V. I.
Abkevich
and
E. I.
Shakhnovich
Biochemistry
33
,
10
026
(
1994
).
19.
M. V.
Struglia
,
J. Phys. A: Math. Gen.
28
,
1469
(
1995
).
20.
A.
Irback
and
H.
Schvarze
,
J. Phys. A: Math. Gen.
28
,
2121
(
1995
).
21.
H. S.
Chan
and
K. A.
Dill
,
J. Chem. Phys.
12
,
100
(
1994
).
22.
J. F.
Joanny
,
J. Phys. Paris II
4
,
1281
(
1994
).
23.
C. M.
Marques
and
J. F.
Joanny
,
Macromolecules
23
,
268
(
1990
).
24.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
101
,
10
074
(
1994
).
25.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
103
,
10
733
(
1995
).
26.
J. S.
Shaffer
,
Macromolecules
28
,
7447
(
1995
).
27.
J. S.
Shaffer
,
Macromolecules
28
,
7447
(
1995
).
28.
J. P.
Donley
and
G. F.
Fredrickson
,
Macromolecules
27
,
458
(
1994
).
29.
A.
Kholodenko
and
C.
Qian
,
Phys. Rev. B: Cond. Matt.
40
,
2477
(
1989
).
30.
F. Wiegel, Path Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986).
31.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
104
,
7306
(
1996
).
32.
J.
Bray
and
M. A.
Moore
,
J. Phys. A
10
,
1927
(
1977
).
33.
T. C.
Lubensky
and
M. H.
Rubin
,
Phys. Rev. B
3
,
3887
(
1971
).
34.
D. L.
Mills
,
Phys. Rev. B
3
,
3887
(
1991
).
35.
J. Blaackmer, Thesis, University of Wageningen, 1990.
36.
P. G.
Higgs
and
H.
Orland
,
J. Chem. Phys.
95
,
4506
(
1991
);
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
).
37.
V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).
38.
S.
Neyret
,
L.
Ouali
,
F.
Candau
, and
E.
Pefferkorn
,
J. Colloid Interface Sci.
176
,
86
(
1995
).
39.
C. A.
Dai
,
B. J.
Dair
,
K. H.
Dai
,
C. K.
Ober
, and
E. J.
Kramer
,
Phys. Rev. Lett.
73
,
2472
(
1994
).
40.
R. C.
Sutton
,
L.
Thai
,
J. M.
Hewitt
,
C. L.
Voycheck
, and
J. S.
Tan
,
Macromolecules
21
,
2432
(
1988
).
41.
S. H.
Anastasiadis
,
T. P.
Russell
,
S. K.
Satija
, and
C.
Majkrzak
,
Phys. Rev. Lett.
62
,
1852
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.