During CO‐oxidation on Pt(100), CO diffuses in a ‘‘disordered environment’’ produced by a complex pattern of reconstructed and unreconstructed regions of the substrate. Macroscopic diffusion of CO is effectively only possible on percolating 1×1‐regions of the substrate. We treat the spatio‐temporal behavior observed in this reaction system accounting in the simple way for the percolative nature of CO‐diffusion. This is done via incorporation into the reaction‐diffusion equations of a suitable chemical diffusion coefficient, exploiting ideas from the theory of transport in disordered media. We use these equations to analyze the propagation of reactive, O‐rich pulses into a CO‐covered 1×1‐background.

1.
G.
Ertl
,
Adv. Catal.
37
,
213
(
1990
).
2.
R.
Imbihl
,
Prog. Surf. Sci.
44
,
185
(
1993
).
3.
R.
Imbihl
and
G.
Ertl
,
Chem. Rev.
95
,
697
(
1995
).
4.
H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991).
5.
R.
Imbihl
,
M. P.
Cox
,
G.
Ertl
,
H.
Muller
, and
W.
Brenig
,
J. Chem. Phys.
83
,
1578
(
1985
);
M. P.
Cox
,
G.
Ertl
, and
R.
Imbihl
,
Phys. Rev. Lett.
54
,
1725
(
1985
).
6.
R. J.
Behm
,
P. A.
Thiel
,
P.
Norton
, and
G.
Ertl
,
J. Chem. Phys.
78
,
7437
(
1983
).
7.
The diffusion or “escape” of CO from 1×1-regions back to hex-regions is an activated process, in contrast to diffusion in the reverse direction. Thus escape is expected to be significant at higher surface temperatures, but not for temperatures around 480 K of interest here.
8.
D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992).
9.
W.
Swiech
,
C. S.
Rastomjee
,
R.
Imbihl
,
J. W.
Evans
,
B.
Rausenberger
,
W.
Engel
,
A. K.
Schmid
,
A. M.
Bradshaw
, and
E.
Zeitler
,
Surf. Sci.
307–309
,
138
(
1994
).
10.
D. G.
Vlachos
,
L. D.
Schmidt
, and
R.
Aris
,
J. Chem. Phys.
93
,
8306
(
1990
).
11.
V.
Gorodetski
,
J. H.
Block
,
W.
Drachsel
, and
M.
Ehsasi
,
Appl. Surf. Sci.
67
,
198
(
1993
);
V.
Gorodetski
,
W.
Drachsel
,
M.
Ehsasi
, and
J. H.
Block
,
J. Chem. Phys.
100
,
6915
(
1994
).
12.
A.
Mikhailov
and
G.
Ertl
,
Chem. Phys. Lett.
238
,
105
(
1995
).
13.
One expects that the “pair of empty sites required for O-adsorption must actually be part of a larger ensemble of empty sites. Correspondingly, the probability of finding such a “pair” is taken as (1−θCO1×1COmax−θO1×1Omax)2, where θCOmax = 1/2 and θOmax = 3/5 are the maximum coverages for CO and O, respectively.
14.
W.
Hosler
,
E.
Ritter
, and
R. J.
Behm
,
Ber. Bunsenges Phys. Chem.
90
,
205
(
1986
);
E.
Ritter
,
R. J.
Behm
,
G.
Potschke
, and
J.
Wintterlin
,
Surf. Sci.
181
,
403
(
1987
).
15.
A.
Hopkinson
,
J. M.
Bradley
,
X. C.
Guo
, and
D. A.
King
,
Phys. Rev. Lett.
71
,
1597
(
1993
);
A.
Hopkinson
and
D. A.
King
,
Chem. Phys.
177
,
433
(
1993
);
M.
Gruyters
,
T.
Ali
, and
D. A.
King
,
Chem. Phys. Lett.
232
,
1
(
1995
).
16.
R. F. S.
Andrade
,
D.
Lima
,
G.
Dewel
, and
P.
Borckmans
,
J. Chem. Phys.
100
,
9192
(
1994
);
R. F. S.
Andrade
,
G.
Dewel
, and
P.
Borckmans
,
J. Chem. Phys.
91
,
2675
(
1989
).,
J. Chem. Phys.
17.
The Ginzburg-Landau evolution equation for θ1×1 from Ref. 16 includes a Laplacian “diffusion” term, where the “diffusion” coefficient, D1×1, is determined by the interfacial energy between adjacent patches of 1×1-and hex-substrate. Here we note that DCO always includes an analogous contribution due to the spatial coupling associated with reaction of species on distinct (adjacent) sites. See,
J. W.
Evans
and
T. R.
Ray
,
Phys. Rev. E
50
,
4302
(
1994
). However, this contribution to DCO, as well as D1×1, are very small, and do not play a significant role in spatial pattern formation.
18.
B. I.
Halperin
,
S.
Feng
, and
P. N.
Sen
,
Phys. Rev. Lett.
54
,
2391
(
1985
);
S.
Feng
,
B. I.
Halperin
, and
P. N.
Sen
,
Phys. Rev. B
35
,
197
(
1987
).
19.
This result for D is often presented in the context of diffusion of a single particle in a disordered environment. However, the same D gives the chemical diffusion coefficient of a non-interacting gas of finite concentration. This follows from simple extension of the analysis of
R.
Kutner
,
Phys. Lett. A
81
,
239
(
1981
), for diffusion on a perfect lattice.
20.
D. E.
Sanders
and
J. W.
Evans
,
Phys. Rev. A
38
,
4187
(
1988
);
M. C.
Bartelt
and
J. W.
Evans
,
Surf. Sci.
298
,
421
(
1993
);
M. C.
Bartelt
and
J. W.
Evans
,
MRS Proc.
312
,
255
(
1993
).
21.
H. H.
Rotermund
,
S.
Jakubith
,
A.
von Oertzen
, and
G.
Ertl
,
J. Chem. Phys.
91
,
4942
(
1989
).
22.
A. S. Mikhailov, Foundations of Synergetics I (Springer, Berlin, 1990).
23.
P. Grindrod, Patterns and Waves (Clarendon, Oxford 1991), Sec. 3.3.
This content is only available via PDF.
You do not currently have access to this content.