Theoretical determinations of the thermal rate constants and product energy distributions of the N2+O→NO+N reaction, which plays a crucial role in hydrocarbon air combustion and high temperature air chemistry, are carried out using a quasiclassical trajectory method. An analytical fit of the lowest 3A′ potential energy surface of this reaction based on the CCI abinitio data is obtained. The trajectory study is done on this surface and an analytical 3A″ surface proposed by Gilibert etal. [J. Chem. Phys. 97, 5542 (1992)]. The thermal rate constants computed from 3000 to 20 000 K are in good agreement with the available experimental data. In addition, the dependence of the rate constant on the N2 internal state is studied. It is found that a low vibrational excitation can reduce the rate constant of this reaction by a factor of 3. Also, we investigate the effect of the N2 vibrational state on the product NO vibrational distribution, and it is found that at low N2 vibrational states, the NO vibrational distribution is nearly Boltzmann. However, at N2(v≳10), the product distribution is almost uniform at low energy levels.

1.
H. S.
Glick
,
J. J.
Klein
, and
W.
Squire
,
J. Chem. Phys.
27
,
850
(
1957
).
2.
K. L.
Wray
and
J. D.
Teare
,
J. Chem. Phys.
36
,
2852
(
1962
).
3.
C. T.
Bowman
,
Combustion Sci. Tech.
3
,
37
(
1971
).
4.
J. B.
Livesey
,
A. L.
Roberts
and
A.
Williams
,
Combustion Sci. Tech.
4
,
9
(
1971
).
5.
S. M.
Shahed
and
H. K.
Newhall
,
Combustion Flame
17
,
131
(
1971
).
6.
D. L. Baulch, D. D. Drysdale, and D. G. Haine, Evaluated Kinetic Data for High Temperature Reactions (Butterworths, London, 1973), Vol. 2.
7.
J. P. Monat, R. K. Hanson, and C. H. Kruger, Proceedings of the 17th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1973), p. 543.
8.
R. L. Jaffe, in Thermophysical Aspects of Re-entry Flows, edited by J. N. Moss and C. D. Scott, 96, Progress in Astronautics and Aeronautics (AIAA, New York, 1986), p. 123.
9.
D. A.
Levin
,
G. V.
Candler
,
R. J.
Collins
,
P. W.
Erdman
,
E. C.
Zipf
, and
C.
Howlett
,
J. Thermophys. Heat Transfer
8
,
447
(
1994
).
10.
M.
Gilibert
,
A.
Aguilar
,
M.
González
, and
R.
Sayós
,
Chem. Phys.
172
,
99
(
1993
).
11.
M.
Gilibert
,
A.
Aguilar
,
M.
González
,
F.
Mota
, and
R.
Sayós
,
J. Chem. Phys.
97
,
5542
(
1992
).
12.
M.
Gilibert
,
A.
Aguilar
,
M.
González
, and
R.
Sayós
,
J. Chem. Phys.
99
,
1719
(
1993
).
13.
M.
Gilibert
,
A.
Aguilar
,
M.
González
, and
R.
Sayós
,
Chem. Phys.
178
,
287
(
1993
).
14.
M.
Gilibert
,
X.
Giménez
,
M.
González
,
R.
Sayós
, and
A.
Aguilar
,
Chem. Phys.
191
,
1
(
1995
).
15.
S. P.
Walch
and
R. L.
Jaffe
,
J. Chem. Phys.
86
,
6946
(
1987
).
16.
S. P. Walch and R. L. Jaffe, AIP document No. PAPS JCPSA-86-6946-10.
17.
R. L. Jaffe, M. D. Pattengill, and D. W. Schwenke, in Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules, edited by A. Lagná (Kluwer, Dordrecht, 1989), p. 367.
18.
D.
Bose
and
G. V.
Candler
,
J. Thermophys. Heat Transfer
10
, (
1996
).
19.
A. Aguilar, M. Gilibert, X. Giménez, M. González, and R. Sayós, J. Chem. Phys. (to be published).
20.
G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).
21.
D. G.
Hopper
,
J. Chem. Phys.
80
,
4290
(
1984
).
22.
R. J.
Donovan
and
D.
Hussain
,
Chem. Rev.
70
,
489
(
1970
).
23.
D. L. Bunker, Theory of Elementary Gas Reaction Rates (Pergamon, London, 1966).
24.
K. S.
Sorbie
and
J. N.
Murrell
,
Mol. Phys.
29
,
1387
(
1975
).
25.
J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. C. J. Varandas, Molecular Potential Energy Functions (Wiley, London, 1984).
26.
J. W.
Duff
and
D. G.
Truhlar
,
J. Chem. Phys.
62
,
2477
(
1975
).
27.
R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford U.P., New York, 1987).
28.
R. L. Burden and J. D. Faires, Numerical Analysis (PWS-Kent, Boston, 1989).
29.
N. Davidson, Avco Research Lab., Report No. 32 (1958).
30.
M. H. Bortner, National Bureau of Standards, NBS TN 484 (1969).
31.
C.
Park
,
J. T.
Howe
,
R. L.
Jaffe
, and
G. V.
Candler
,
J. Thermophys. Heat Transfer
8
,
9
(
1994
).
32.
D. G. Truhlar and J. T. Muckerman, in Atom Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New York, 1979), p. 505.
33.
R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions Part B, edited by W. H. Miller (Plenum, New York, 1976), p. 1.
34.
M. B.
Faist
,
J. T.
Muckerman
, and
F. E.
Schubert
,
J. Chem. Phys.
69
,
4087
(
1978
).
35.
C. E.
Treanor
,
J. W.
Rich
, and
R. G.
Rehm
,
J. Chem. Phys.
48
,
1798
(
1968
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.