A three‐dimensional time‐dependent self‐consistent‐field (TDSCF) approach is proposed to study the vibrational predissociation of the I2(B)–Ne van der Waals (vdW) complex. Jacobian coordinates are used within the assumption of zero‐total angular momentum. In the method the total wave function is factorized such that the bending mode of the system is explicitly separated, while the coupling between the remaining two degrees of freedom is treated exactly. The decay dynamics of several resonances corresponding to different initial vibrational states of I2 is investigated through long‐time wave packet propagations. Calculated resonance lifetimes are compared to experimental data and found to be in quantitative agreement with them. The results show that predissociation of the complex is mainly governed by the coupling between the I2 and the vdW stretching vibrations, whereas the bending mode has a rather weak effect on the dynamics. The good quality of the TDSCF description of this long‐time dynamical process is due to the adaptation of the decoupling approximations applied in the method to the physical situation of the system. The validity of the approach is discussed in the light of the results.

1.
(a)
M. J.
Rosker
,
M.
Dantus
, and
A. H.
Zewail
,
J. Chem. Phys.
89
,
6113
(
1988
);
(b)
R. M.
Bowman
,
M.
Dantus
, and
A. H.
Zewail
,
Chem. Phys. Lett.
156
,
131
(
1989
);
(b)
A. H.
Zewail
,
J. Chem. Soc. Faraday Trans. 2
85
,
1221
(
1989
).
2.
H. L.
Fragnito
,
J.-Y.
Bigot
,
P. C.
Becker
, and
C. V.
Shank
,
Chem. Phys. Lett.
160
,
101
(
1989
).
3.
N. F.
Scherer
,
C.
Sipes
,
R. B.
Bernstein
, and
A. H.
Zewail
,
J. Chem. Phys.
92
,
5239
(
1990
).
4.
N. F.
Scherer
,
A. J.
Ruggiero
,
M.
Du
, and
G. R.
Fleming
,
J. Chem. Phys.
93
,
856
(
1990
).
5.
(a)
D. M.
Willberg
,
M.
Gutmann
,
J. J.
Breen
, and
A. H.
Zewail
,
J. Chem. Phys.
96
,
198
(
1992
);
(b)
M.
Gutmann
,
D. M.
Willberg
, and
A. H.
Zewail
,
J. Chem. Phys.
97
,
8037
(
1992
); ,
J. Chem. Phys.
M.
Gutmann
,
D. M.
Willberg
, and
A. H.
Zewail
, (c)
97
,
8048
(
1992
).,
J. Chem. Phys.
6.
Y.
Chen
,
L.
Hunziker
,
P.
Ludöwise
, and
M.
Morgen
,
J. Chem. Phys.
97
,
2149
(
1992
).
7.
(a)
S. L.
Nickolaisen
,
H. E.
Cartland
, and
C.
Wittig
,
J. Chem. Phys.
96
,
4378
(
1992
);
(b)
S. I.
Ionov
,
G. A.
Brucker
,
C.
Jaques
,
L.
Valachovic
, and
C.
Wittig
,
J. Chem. Phys.
97
,
9486
(
1992
).,
J. Chem. Phys.
8.
(a)
Y.
Yan
,
R. M.
Whitnell
,
K. R.
Wilson
, and
A. H.
Zewail
,
Chem. Phys. Lett.
193
,
402
(
1992
);
(b)
E. D.
Potter
,
Q.
Lin
, and
A. H.
Zewail
,
Chem. Phys. Lett.
200
,
605
(
1992
).,
Chem. Phys. Lett.
9.
T.
Baumert
,
J. L.
Herek
, and
A. H.
Zewail
,
J. Chem. Phys.
99
,
4430
(
1993
).
10.
(a)
S. I.
Ionov
,
G. A.
Brucker
,
C.
Jaques
,
Y.
Chen
, and
C.
Wittig
,
J. Chem. Phys.
99
,
3420
(
1993
);
(b)
S. I.
Ionov
,
G. A.
Brucker
,
C.
Jaques
,
L.
Valachovic
, and
C.
Wittig
,
J. Chem. Phys.
99
,
6553
(
1993
).,
J. Chem. Phys.
11.
D. H.
Levy
,
Adv. Chem. Phys.
47
,
323
(
1981
).
12.
K. C.
Janda
,
Adv. Chem. Phys.
60
,
201
(
1985
).
13.
J. C.
Drobits
and
M. I.
Lester
,
J. Chem. Phys.
86
,
1662
(
1987
).
14.
(a)
M. D.
Feit
,
J. A.
Fleck
,Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
);
(b)
M. D.
Feit
and
J. A
Fleck
, Jr.
,
J. Chem. Phys.
78
,
301
(
1983
).
15.
(a)
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
);
(b)
R.
Kosloff
and
D.
Kosloff
,
J. Comput. Phys.
63
,
363
(
1986
).,
J. Comput. Phys.
16.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
17.
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
).
18.
(a)
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
);
(b)
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
19.
R. B.
Gerber
,
R.
Kosloff
, and
M.
Berman
,
Comp. Phys. Rep.
5
,
59
(
1986
).
20.
C.
Leforestier
,
R.
Bisseling
,
C.
Cerjan
,
M. D.
Feit
,
R.
Friesner
,
A.
Guldberg
,
A. D.
Hammerich
,
G.
Jolicard
,
W.
Karrlein
,
H.-D.
Meyer
,
N.
Lipkin
,
O.
Roncero
, and
R.
Kosloff
,
J. Comput. Phys.
94
,
59
(
1991
).
21.
(a)
S. K.
Gray
and
C. E.
Wozny
,
J. Chem. Phys.
94
,
2817
(
1991
);
(b)
S. K.
Gray
,
Faraday Discuss.
97
,
143
(
1994
).
22.
S. K.
Gray
and
O.
Roncero
,
J. Phys. Chem.
99
,
2512
(
1995
).
23.
(a)
F.
Le Quéré
and
S. K.
Gray
,
J. Chem. Phys.
98
,
5396
(
1993
);
(b) O. Roncero, G. Delgado-Barrio, M. I. Hernández, J. Campos-Martínez, and P. Villarreal, Chem. Phys. Lett. (in press);
(c) J. Campos-Martínez, M. I. Hernández, O. Roncero, P. Villarreal, and G. Delgado-Barrio, ibid (in press).
24.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
25.
R.
Bisseling
,
R.
Kosloff
,
R. B.
Gerber
,
M. A.
Ratner
,
L.
Gibson
, and
C.
Cerjan
,
J. Chem. Phys.
87
,
2760
(
1987
).
26.
R.
Alimi
,
R. B.
Gerber
,
A. D.
Hammerich
,
R.
Kosloff
, and
M. A.
Ratner
,
J. Chem. Phys.
93
,
6484
(
1990
).
27.
A. B.
McCoy
,
R. B.
Gerber
, and
M. A.
Ratner
,
J. Chem. Phys.
101
,
1975
(
1994
).
28.
A.
García-Vela
and
R. B.
Gerber
,
J. Chem. Phys.
103
,
3463
(
1995
).
29.
(a)
R. B.
Gerber
,
V.
Buch
, and
M. A.
Ratner
,
J. Chem. Phys.
77
,
3022
(
1982
);
(b)
G. C.
Schatz
,
V.
Buch
,
M. A.
Ratner
, and
R. B.
Gerber
,
J. Chem. Phys.
79
,
1808
(
1983
).,
J. Chem. Phys.
30.
J.
Durup
,
Chem. Phys. Lett.
132
,
299
(
1986
).
31.
L. L.
Halcomb
and
D. J.
Diestler
,
J. Chem. Phys.
84
,
3130
(
1986
).
32.
M.
Amarouche
,
F. X.
Gadéa
, and
J.
Durup
,
Chem. Phys.
130
,
145
(
1989
).
33.
M.
Jacon
,
P.
Guérin
,
O.
Atabek
, and
H.
Le Rouzo
,
J. Chem. Phys.
97
,
2490
(
1992
).
34.
(a)
A.
García-Vela
,
R. B.
Gerber
, and
J. J.
Valentini
,
J. Chem. Phys.
97
,
3297
(
1992
);
(b)
A.
García-Vela
,
R. B.
Gerber
, and
D. G.
Imre
,
J. Chem. Phys.
97
,
7242
(
1992
).,
J. Chem. Phys.
35.
K.
Hang
and
H.
Metiu
,
J. Chem. Phys.
97
,
4781
(
1992
).
36.
N.
Balakrishnan
and
G. D.
Billing
,
J. Chem. Phys.
101
,
2785
(
1994
).
37.
J. Manz and B. Hartke (unpublished).
38.
A.
García-Vela
and
R. B.
Gerber
,
J. Chem. Phys.
98
,
427
(
1993
).
39.
(a)
J.
Campos-Martínez
and
R. D.
Coalson
,
J. Chem. Phys.
93
,
4740
(
1990
);
(b)
J.
Campos-Martínez
,
J. R.
Waldeck
, and
R. D.
Coalson
,
J. Chem. Phys.
96
,
3613
(
1992
).,
J. Chem. Phys.
40.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
87
,
5781
(
1987
).
41.
(a)
Z.
Kotler
,
A.
Nitzan
, and
R.
Kosloff
,
Chem. Phys. Lett.
153
,
483
(
1988
);
(a)
Z.
Kotler
,
E.
Neria
, and
A.
Nitzan
,
Comp. Phys. Commun.
63
,
243
(
1991
).
42.
A. D.
Hammerich
,
R.
Kosloff
, and
M. A.
Ratner
,
Chem. Phys. Lett.
171
,
97
(
1990
).
43.
(a)
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
);
(b)
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
9062
(
1992
).
44.
(a)
J.-Y.
Fang
and
H.
Guo
,
J. Chem. Phys.
102
,
1944
(
1995
);
(b)
L.
Liu
,
J.-Y.
Fang
, and
H.
Guo
,
J. Chem. Phys.
102
,
2404
(
1995
).,
J. Chem. Phys.
45.
R. B.
Gerber
and
R.
Alimi
,
Chem. Phys. Lett.
184
,
69
(
1991
).
46.
J.
Rubayo-Soneira
,
A.
García-Vela
,
G.
Delgado-Barrio
, and
P.
Villarreal
,
Chem. Phys. Lett.
243
,
236
(
1995
).
47.
M.
Gruebele
and
A. H.
Zewail
,
J. Chem. Phys.
98
,
883
(
1993
). Note that there is a typesetting error in Eq. (17) of the above paper. The expression of q1 reads q1 = 2.9343×10−3(D/Z)2P0 and should instead read q1 = 2.9343×10−3(D/Z2)1/2P0 ;[A. H. Zewail (private communication)].
48.
R. D.
Coalson
,
Chem. Phys. Lett.
165
,
443
(
1990
).
49.
R. B.
Gerber
and
M. A.
Ratner
,
Adv. Chem. Phys.
70
,
97
(
1988
).
50.
S. K.
Gray
,
J. Chem. Phys.
96
,
6543
(
1992
).
51.
F.
Le Quéré
and
C.
Leforestier
,
J. Chem. Phys.
94
,
1118
(
1991
).
52.
H.
Guo
,
J. Chem. Phys.
96
,
6629
(
1992
).
53.
J. A.
Beswick
and
J.
Jortner
,
Adv. Chem. Phys.
47
,
363
(
1981
).
54.
A. García-Vela (unpublished).
This content is only available via PDF.
You do not currently have access to this content.